Similar documents
all.dvi

知能科学:ニューラルネットワーク

知能科学:ニューラルネットワーク

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)


numb.dvi

untitled

Gmech08.dvi

1 X X A, B X = A B A B A B X 1.1 R R I I a, b(a < b) I a x b = x I 1.2 R A 1.3 X : (1)X (2)X X (3)X A, B X = A B A B = 1.4 f : X Y X Y ( ) A Y A Y A f

all.dvi

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

Gmech08.dvi


120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2

all.dvi


QMII_10.dvi

all.dvi

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

2.5 (Gauss) (flux) v(r)( ) S n S v n v n (1) v n S = v n S = v S, n S S. n n S v S v Minoru TANAKA (Osaka Univ.) I(2012), Sec p. 1/30

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

Xray.dvi

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P

c y /2 ddy = = 2π sin θ /2 dθd /2 [ ] 2π cos θ d = log 2 + a 2 d = log 2 + a 2 = log 2 + a a 2 d d + 2 = l

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

第10章 アイソパラメトリック要素

untitled

46 4 E E E E E 0 0 E E = E E E = ) E =0 2) φ = 3) ρ =0 1) 0 2) E φ E = grad φ E =0 P P φ = E ds 0

meiji_resume_1.PDF

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

第5章 偏微分方程式の境界値問題

( ) e + e ( ) ( ) e + e () ( ) e e Τ ( ) e e ( ) ( ) () () ( ) ( ) ( ) ( )

( ) s n (n = 0, 1,...) n n = δ nn n n = I n=0 ψ = n C n n (1) C n = n ψ α = e 1 2 α 2 n=0 α, β α n n! n (2) β α = e 1 2 α 2 1

85 4

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2

untitled

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

³ÎΨÏÀ

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

1 8, : 8.1 1, 2 z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = n i=1 a ii x 2 i + i<j 2a ij x i x j = ( x, A x), f =

QMI_09.dvi

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

TOP URL 1


7

QMI_10.dvi

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

重力方向に基づくコントローラの向き決定方法

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

y = x x R = 0. 9, R = σ $ = y x w = x y x x w = x y α ε = + β + x x x y α ε = + β + γ x + x x x x' = / x y' = y/ x y' =

untitled

63 3.2,.,.,. (2.6.38a), (2.6.38b), V + V V + Φ + fk V = 0 (3.2.1)., Φ = gh, f.,. (2.6.40), Φ + V Φ + Φ V = 0 (3.2.2). T = L/C (3.2.3), C. C V, T = L/V

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

TOP URL 1

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,,

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

untitled

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

LLG-R8.Nisus.pdf

基礎数学I

Gmech08.dvi

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

tnbp59-21_Web:P2/ky132379509610002944

ẍ = kx, (k > ) (.) x x(t) = A cos(ωt + α) (.). d/ = D. d dt x + k ( x = D + k ) ( ) ( ) k k x = D + i D i x =... ( ) k D + i x = or ( ) k D i x =.. k.

2007年08月号 022416/0812 会告

ε

第1章 微分方程式と近似解法

IA


Note.tex 2008/09/19( )

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.


(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

TOP URL 1


S. Yamauchi

数学演習:微分方程式

高等学校学習指導要領

高等学校学習指導要領

t (x(t), y(t)), a t b (x(a), y(a)) t ( ) ( ) dy s + dt dt dt [a, b] a a t < t 1 < < t n b {(x(t i ), y(t i ))} n i ( s(t) ds ) ( ) dy dt + dt dt ( ) d

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =

D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y

C : q i (t) C : q i (t) q i (t) q i(t) q i(t) q i (t)+δq i (t) (2) δq i (t) δq i (t) C, C δq i (t 0 )0, δq i (t 1 ) 0 (3) δs S[C ] S[C] t1 t 0 t1 t 0


SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ

/ n (M1) M (M2) n Λ A = {ϕ λ : U λ R n } λ Λ M (atlas) A (a) {U λ } λ Λ M (open covering) U λ M λ Λ U λ = M (b) λ Λ ϕ λ : U λ ϕ λ (U λ ) R n ϕ

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

Transcription:

2005 2006.2.22-1 -

1 Fig. 1 2005 2006.2.22-2 -

Element-Free Galerkin Method (EFGM) Meshless Local Petrov-Galerkin Method (MLPGM) 2005 2006.2.22-3 -

2 MLS u h (x) 1 p T (x) = [1, x, y]. (1) φ(x) 0.5 φ(x) N Σ (1) J[a] = w i (x) p T (x i )a(x) u i 2 i=1 0-0.5 0 0.5 x Fig. 2 1 φ i (x) N : w(r) : u i u(x i ) 2005 2006.2.22-4 -

w(r) MLS Gauss : : Table 1 MLS 1 c = h R = 4h ( 5 ) Gauss h : 2005 2006.2.22-5 -

3 Element-Free Galerkin Method 2 Poisson (2) (3) (4) 2 Poisson : Fig. 3 Ω Ω (5) λ(s) : Lagrange ( Ω s ) (5) (6) 2 Poisson (6) 2005 2006.2.22-6 -

Table 2 Ω = ( 1, 1) ( 1, 1) Dirichlet u = sinπx cosπy p = 2π 2 sinπx cosπy 1 1024 256 Fig. 4 2005 2006.2.22-7 -

CPU 10 3 CPU Time [s] 10 1 10-1 Gauss ICCG 10-3 10 1 10 2 10 3 10 4 Total Number of Nodes, N Fig. 5(6) CPU 2005 2006.2.22-8 -

4 Meshless Local Petrov-Galerkin Method 2 Poisson 2 Poisson 2 Poisson : 2 Poisson : Fig. 6 (7) α : (7) Ku = f. (8) 2 Poisson (8) 2005 2006.2.22-9 -

Table 3 Ω = ( 1, 1) ( 1, 1) 1 Dirichlet u = sinπx cosπy p = 2π 2 sinπx cosπy 3200 Fig. 7 2005 2006.2.22-10 -

(a) r s = 0.5h (b) r s = h (c) r s = h Fig. 8 2005 2006.2.22-11 -

10 1 Relative Error, ε 10-1 10-3 10 2 10 3 10 4 Total Number of Nodes, N Fig. 9 (α = 10 6 ) : r s = 0.5h : r s = : r s = 2h : r s = 4h : r s = 10h 2005 2006.2.22-12 - 2 2 h : r s = h

10 1 Relative Error, ε 10-1 10-3 10 2 10 3 10 4 Total Number of Nodes, N Fig. 10 (r s = 4h) : α = 1.0 10 2 : α = 1.0 10 4 : α = 1.0 10 6 : α = 1.0 10 8 : α = 1.0 10 10 : α = 1.0 10 12 2005 2006.2.22-13 -

5 EFGM MLPGM Table 4 EFGM MLPGM u δu EFGM Lagrange (Galerkin ) MLPGM (Petrov-Galerkin ) 2005 2006.2.22-14 -

EFG MLPG EFG EFG MLPG MLPG Table 5 Lagrange Lagrange 2005 2006.2.22-15 -

Table 6 w σ φ ψ Gauss Shepard (0 MLS ) Gauss MLS MLS Table 7 Galerkin(w) w w Galerkin(σ) σ σ Galerkin(φ) φ φ Petrov-Galerkin(φ, w) φ w Petrov-Galerkin(φ, σ) φ σ Petrov-Galerkin(φ, ψ) φ ψ 2005 2006.2.22-16 -

Lagrange EFG 10 1 10 1 10 0 10 0 Relative Error, ε 10-1 10-2 Relative Error, ε 10-1 10-2 10-3 10 1 10 2 10 3 10 4 Total Number of Nodes, N 10-3 10 1 10 2 10 3 10 4 Total Number of Nodes, N (a) Galerkin (b) Petrov-Galerkin Fig. 11 : Galerkin(w) : Galerkin(σ) : Galerkin(φ) : Petrov-Galerkin(φ, w) : Petrov-Galerkin(φ, σ) : Petrov- Galerkin(φ, ψ) 2005 2006.2.22-17 -

EFG 10 1 10 1 10 0 10 0 Relative Error, ε 10-1 10-2 Relative Error, ε 10-1 10-2 10-3 10 1 10 2 10 3 10 4 10-3 10 1 10 2 10 3 10 4 Total Number of Nodes, N Total Number of Nodes, N (a) Galerkin (b) Petrov-Galerkin Fig. 12 : Galerkin(w) : Galerkin(σ) : Galerkin(φ) : Petrov-Galerkin(φ, w) : Petrov-Galerkin(φ, σ) : Petrov- Galerkin(φ, ψ) 2005 2006.2.22-18 -

Lagrange MLPG 10 0 10-1 Relative Error, ε 10-2 10-3 10-4 10 2 10 3 10 4 Total Number of Nodes, N Fig. 13 : Galerkin(w) : Galerkin(φ) : Petrov- Galerkin(φ, w) 2005 2006.2.22-19 -

MLPG 10 1 10 0 Relative Error, ε 10-1 10-2 10-3 10 2 10 3 10 4 Total Number of Nodes, N Fig. 14 : Galerkin(w) : Galerkin(φ) : Petrov- Galerkin(φ, w) 2005 2006.2.22-20 -

6 EFGM ICCG Gauss MLPGM Lagrange MLPG Petrov-Galerkin(φ, w) Petrov-Galerkin(φ, w) 2005 2006.2.22-21 -