QCD ( ), ( ) 8 23 Typeset by FoilTEX

Similar documents

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

0406_total.pdf

TOP URL 1

抄録/抄録1    (1)V

総研大恒星進化概要.dvi

本文/目次(裏白)

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í

cm λ λ = h/p p ( ) λ = cm E pc [ev] 2.2 quark lepton u d c s t b e 1 3e electric charge e color charge red blue green qq

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

main.dvi

[ ] (Ising model) 2 i S i S i = 1 (up spin : ) = 1 (down spin : ) (4.38) s z = ±1 4 H 0 = J zn/2 i,j S i S j (4.39) i, j z 5 2 z = 4 z = 6 3

DaisukeSatow.key

¼§À�ÍýÏÀ – Ê×ÎòÅŻҼ§À�¤È¥¹¥Ô¥ó¤æ¤é¤® - No.7, No.8, No.9

第90回日本感染症学会学術講演会抄録(I)

陦ィ邏・2

BH BH BH BH Typeset by FoilTEX 2

Ł\”ƒ-2005

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

References: 3 June 21, 2002 K. Hukushima and H. Kawamura, Phys.Rev.E, 61, R1008 (2000). M. Matsumoto, K. Hukushima,

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1

TOP URL 1

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m

LLG-R8.Nisus.pdf

反D中間子と核子のエキゾチックな 束縛状態と散乱状態の解析

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

180号.indd

( ) (ver )

Mott散乱によるParity対称性の破れを検証

Mathematical Logic I 12 Contents I Zorn

,,..,. 1

O1-1 O1-2 O1-3 O1-4 O1-5 O1-6

y = x x R = 0. 9, R = σ $ = y x w = x y x x w = x y α ε = + β + x x x y α ε = + β + γ x + x x x x' = / x y' = y/ x y' =

プリント

TOP URL 1

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.


N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x



kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2

成長機構

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

iBookBob:Users:bob:Documents:CurrentData:flMŠÍ…e…L…X…g:Statistics.dvi

gr09.dvi


N/m f x x L dl U 1 du = T ds pdv + fdl (2.1)

H.Haken Synergetics 2nd (1978)

TOP URL 1

Euler, Yang-Mills Clebsch variable Helicity ( Tosiaki Kori ) School of Sciences and Technology, Waseda Uiversity (i) Yang-Mills 3 A T (T A) Poisson Ha


Introduction SFT Tachyon condensation in SFT SFT ( ) at 1 / 38

YITP50.dvi

QMI_09.dvi

QMI_10.dvi

2017 II 1 Schwinger Yang-Mills 5. Higgs 1

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

SUSY DWs

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

Note.tex 2008/09/19( )

τ τ

: , 2.0, 3.0, 2.0, (%) ( 2.

201711grade1ouyou.pdf

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat

nenmatsu5c19_web.key

2000年度『数学展望 I』講義録

1/2 ( ) 1 * 1 2/3 *2 up charm top -1/3 down strange bottom 6 (ν e, ν µ, ν τ ) -1 (e) (µ) (τ) 6 ( 2 ) 6 6 I II III u d ν e e c s ν µ µ t b ν τ τ (2a) (


July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i



meiji_resume_1.PDF

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

1 s 1 H(s 1 ) N s 1, s,, s N H({s 1,, s N }) = N H(s k ) k=1 Z N =Tr {s1,,s N }e βh({s 1,,s N }) =Tr s1 Tr s Tr sn e β P k H(s k) N = Tr sk e βh(s k)

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ

δf = δn I [ ( FI (N I ) N I ) T,V δn I [ ( FI N I ( ) F N T,V ( ) FII (N N I ) + N I ) ( ) FII T,V N II T,V T,V ] ] = 0 = 0 (8.2) = µ (8.3) G

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

スライド タイトルなし

ʪ¼Á¤Î¥È¥Ý¥í¥¸¥«¥ë¸½¾Ý (2016ǯ¥Î¡¼¥Ù¥ë¾Þ¤Ë´ØÏ¢¤·¤Æ)

量子力学A

untitled

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x

susy.dvi


arxiv: v1(astro-ph.co)

January 16, (a) (b) 1. (a) Villani f : R R f 2 f 0 x, y R t [0, 1] f((1 t)x + ty) (1 t)f(x) + tf(y) f 2 f 0 x, y R t [0, 1] f((1 t)x + ty) (1 t

構造と連続体の力学基礎

I

TeV b,c,τ KEK/ ) ICEPP

スライド 1

2 2 1?? 2 1 1, 2 1, 2 1, 2, 3,... 1, 2 1, 3? , 2 2, 3? k, l m, n k, l m, n kn > ml...? 2 m, n n m

Transcription:

QCD ( ), ( ) 8 23 Typeset by FoilTEX

Introduction:QCD Phase diagram of QCD system Critical end point Quark Gluon Plasma T c Temperature 1st order phase transition line Hadron 0 CSC 0 Chemical potential summer school 2008 1/20

Introduction: G = SU R (N f ) SU L (N f ) G SU v (N f ) at T = 0( ) T > T c ( ) Q. Banks-Casher Dirac Dirac chrmt QCD summer school 2008 2/20

Table of contents 1. Introduction 2. Dirac Dirac 3. Dirac 4. 5. summer school 2008 3/20

2.1 QCD Dirac Z QCD (m) = = D ψdψda µ e R d 4 x ψ(d+m)ψ(x) S YM DA µ det(d + m f )e S YM det(d + m f ) f f YM QCD Dirac D = γ µ ( µ + ia µ ) Yang- Mills D iλ n det(d + m f ) = n (iλ n + m f ) summer school 2008 4/20

2.2 Dirac 1. D = D iλ (λ R) 2. {D, γ 5 } = 0 ( ) ±iλ (..Ḋφ = iλφ γ 5Dφ = Dγ 5 φ = iλγ 5 φ Dγ 5 φ = iλγ 5 φ) D D = [ 0 iw iw 0 ] summer school 2008 5/20

2.3 Banks-Casher Dirac (Dirac )ρ(λ): ρ(λ) = δ(λ λ n ) n QCD Banks-Casher : < A.Casher,1980) ψψ = πρ(0) V λ ρ(λ) (cf. ρ free (λ) λ 3 0 (λ 0)) ψψ > ρ(λ) (T.Banks & summer school 2008 6/20

3.1 (E.V.Shuryak& J.J.M.Verbaarschot,1993) Z RM ν=0(m) = DW f det(d + m f )e nσ2 tr(w W ) D = [ 0 iw iw 0 ] D n n W W (chiral Gaussian ensemble) W (Random distribution) summer school 2008 7/20

3.2 chrmt (1) chrmt Dirac (J.J.M.Verbaarschot & I. Zahed,1993; K. Takahashi,1998) (chgue, ν = 0, m 0) Z RM = dλ 1 dλ n p(λ 1,, λ n ) p(λ 1,, λ n ) λ 2 j λ 2 l 2 λ 2N f +1 j e nσ2 λ 2 j j<l j ρ(λ) dλ 2 dλ n p(λ, λ 2,, λ n ) summer school 2008 8/20

3.3 chrmt (2) ρ(λ)/v = λσ 2 (nσ 2 λ 2 ) N fe nσ2 λ 2 n! (n + N f 1)! [ L N f n (nσ 2 λ 2 ) 2 L N f +1 n (nσ 2 λ 2 )L N f 1 n (nσ 2 λ 2 ) ] Σ2 2π 4 Σ 2 λ2 (V ( )) (L a n(x):laguerre ) Banks-Casher ψψ = πρ(0)/v = Σ> 0 chrmt summer school 2008 9/20

3.4 chrmt Dirac (N f = 1) Ρ Λ V 0.35 0.30 0.25 0.20 0.15 n 5 n 10 n 0.10 0.05 0.5 1.0 1.5 2.0 2.5 Λ V (= 2n) ( ) summer school 2008 10/20

3.5 QCD chrmt ( ) QCD Dirac chrmt Dirac Q:chRMT A1 QCD (cf. NJL model) schematic model chrmt (cf. (A.D.Jackson& J.J.M.Verbaarschot,1996; M.A.Stephanov,1996)etc.) A2 chrmt QCD (Universality) summer school 2008 11/20

3.6 Universality ρ(λ) λ = 0 ( ) Microscopic spectrumρ s (z) Universal (E.V.Shuryak& J.J.M.Verbaarschot,1993) ρ s (z) lim V 1 V Σ ρ( z ) (z = V Σλ) V Σ = z 2 [J 2 N f (z) J 2 N f +1(z)J 2 N f 1(z)] (cf. Leutwyler- Smilga sum rule(h.leutwyler& A.Smilga,1992), Gaussian distribution stability etc.) summer school 2008 12/20

4.1 QCD Dirac Dirac chrmt Dirac :Staggered Fermion SU(2) (β = 4/g 2 0) V = 6 4, 1000 configurations V = 8 4, 1081 configurations summer school 2008 13/20

4.2 :global spectrum 0.25 0.2 8 4 global spectrum 6 4 global spectrum )/V ( 0.15 0.1 0.05 0 0 0.5 1 1.5 2 2.5 3 ρ(0)/v = 0.21(L = 6), 0.20(L = 8) > 0(lattice unit) summer school 2008 14/20

4.3 :microscopic spectrum 0.6 0.5 chrmt prediction 0.4 s (z) 0.3 0.2 0.1 0 0 5 10 15 20 z ρ s (z) = 2z 2 1 0 duu2 1 0 dv[j 0(2uvz)J 1 (2uz) vj 0 (2uz)J 1 (2uvz)] (T.Nagao & P.J.Forrester,1995). summer school 2008 15/20

4.3 :microscopic spectrum(l = 6) 0.6 0.5 microscopic spectrum chrmt prediction 0.4 s (z) 0.3 0.2 0.1 0 0 5 10 15 20 z ρ s (z) = 2z 2 1 0 duu2 1 0 dv[j 0(2uvz)J 1 (2uz) vj 0 (2uz)J 1 (2uvz)] (T.Nagao & P.J.Forrester,1995). summer school 2008 16/20

4.3 :microscopic spectrum(l = 8) 0.6 0.5 microscopic spectrum chrmt prediction 0.4 s (z) 0.3 0.2 0.1 0 0 5 10 15 20 z ρ s (z) = 2z 2 1 0 duu2 1 0 dv[j 0(2uvz)J 1 (2uz) vj 0 (2uz)J 1 (2uvz)] (T.Nagao & P.J.Forrester,1995). summer school 2008 17/20

4.4 :microscopic spectrum 0.6 0.5 0.4 8 4 microscopic spectrum 6 4 microscopic spectrum chrmt prediction s (z) 0.3 0.2 0.1 0 0 5 10 15 20 z summer school 2008 18/20

4.5 Dirac ρ s (z) quenched SU(2) (M.E.Berbenni-Bitsch, S.Meyer, A.Schäfer, J.J.M.Verbaarschot & T.Wettig,1998) 2-flavor QCD (H.Fukaya, S.Aoki, T.W.Chiu, S.Hashimoto, T.Kaneko, H.Matsufuru, J.Noaki, K.Ogawa, T.Onogi, & N. Yamada, 2007) summer school 2008 19/20

5 chrmt chrmt schematic model ρ s (z) Universality Fermion model chrmt: summer school 2008 20/20

A.1 Banks-Casher (N f = 1) ψψ = lim m 0 = lim m 0 = lim m 0 = lim m 0 lim V lim V lim V 1 V m ln ZQCD = lim 1 1 V iλ n n + m QCD 1 2m V λ 2 n + m 2 dλ ρ(λ) V λ n >0 2m λ 2 + m 2 = m 0 QCD lim V dλ ρ(λ) V 1 V 1 Z QCD m det(d + m) YM (... ±λ ) πδ(λ) = πρ(0) V summer school 2008 21/20