MEC NC High frequency variation speed control of spindle motor for self-excited chattering vibration suppression in NC Machine tools. Teruaki I

Similar documents
Table. Stage model parameters. Mass of pole part m.4 kg Mass of table part M 22 kg Thrust viscous constant c x 2. 2 N s/m Twist dumping constant of jo

Instability of Aerostatic Journal Bearings with Porous Floating Bush at High Speeds Masaaki MIYATAKE *4, Shigeka YOSHIMOTO, Tomoaki CHIBA and Akira CH

鉄鋼協会プレゼン

SPC PWM IPM Proposal of Control Method for IPM Motor Based on PWM Hold Model in Overmodulation Range Takayuki Miyajima, Hiroshi Fujimoto (Yokoha

IIC Proposal of Range Extension Control System by Drive and Regeneration Distribution Based on Efficiency Characteristic of Motors for Electric

Proposal of Driving Torque Control Method for Electric Vehicle with In-Wheel Motors Masataka Yoshimura (Yokohama National University) Hiroshi Fujimoto

Fig. 2 Signal plane divided into cell of DWT Fig. 1 Schematic diagram for the monitoring system

SICE東北支部研究集会資料(2012年)

Proceedings of the 61st Annual Conference of the Institute of Systems, Control and Information Engineers (ISCIE), Kyoto, May 23-25, 2017 The Visual Se

第62巻 第1号 平成24年4月/石こうを用いた木材ペレット

Input image Initialize variables Loop for period of oscillation Update height map Make shade image Change property of image Output image Change time L

EQUIVALENT TRANSFORMATION TECHNIQUE FOR ISLANDING DETECTION METHODS OF SYNCHRONOUS GENERATOR -REACTIVE POWER PERTURBATION METHODS USING AVR OR SVC- Ju

特-3.indd

Fig. 1 KAMOME50-2 Table 1 Principal dimensions Fig.2 Configuration of the hydrofoils (Endurance and sprint foil) Fig. 3 Schematic view of the vortex l

MD ,RM ,VT Aircraft Yaw-rate Suppression Method Using Driving Force Control by Electrically Driven Wheel for One-wheel Landing Tosh

Synthesis and Development of Electric Active Stabilizer Suspension System Shuuichi BUMA*6, Yasuhiro OOKUMA, Akiya TANEDA, Katsumi SUZUKI, Jae-Sung CHO

Tornado Series selection SW TiCN HSS Co FAX VL PM

,, 2. Matlab Simulink 2018 PC Matlab Scilab 2

Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels).

& Vol.5 No (Oct. 2015) TV 1,2,a) , Augmented TV TV AR Augmented Reality 3DCG TV Estimation of TV Screen Position and Ro

<8B5A8F70985F95B632936EE7B22E696E6464>

NEW AquaREVO Drills Stub/Regular AQRVDS AQRVDR

メタルバンドソー

mt_4.dvi

[2] OCR [3], [4] [5] [6] [4], [7] [8], [9] 1 [10] Fig. 1 Current arrangement and size of ruby. 2 Fig. 2 Typography combined with printing

DPA,, ShareLog 3) 4) 2.2 Strino Strino STRain-based user Interface with tacticle of elastic Natural ObjectsStrino 1 Strino ) PC Log-Log (2007 6)

PRODUCT INFORMATION Highly Efficient FXS Carbide Ball Nose End Mills Vol. 3 PAT.P. FXS-EBT FXS-LS-EBT FXS-PC-EBT FXS-EBM

1 4 4 [3] SNS 5 SNS , ,000 [2] c 2013 Information Processing Society of Japan

kiyo5_1-masuzawa.indd

知能と情報, Vol.30, No.5, pp

1 2 3

untitled

<4D F736F F D DB82CC88F892A38BAD937893C190AB76355F8D5A897B8CE3325F2E646F63>

1 Web [2] Web [3] [4] [5], [6] [7] [8] S.W. [9] 3. MeetingShelf Web MeetingShelf MeetingShelf (1) (2) (3) (4) (5) Web MeetingShelf

28 Horizontal angle correction using straight line detection in an equirectangular image

[ 30 p. 1-8 (2012)] / ** *** Numerical Analysis of Metal Transfer Phenomena - critical condition between globular and spray transfer mode - by KADOTA

JIS Z803: (substitution method) 3 LCR LCR GPIB

MmUm+FopX m Mm+Mop F-Mm(Fop-Mopum)M m+mop MSuS+FX S M S+MOb Fs-Ms(Mobus-Fex)M s+mob Fig. 1 Particle model of single degree of freedom master/ slave sy

JFE.dvi

Study on Throw Accuracy for Baseball Pitching Machine with Roller (Study of Seam of Ball and Roller) Shinobu SAKAI*5, Juhachi ODA, Kengo KAWATA and Yu

Optical Lenses CCD Camera Laser Sheet Wind Turbine with med Diffuser Pitot Tube PC Fig.1 Experimental facility. Transparent Diffuser Double Pulsed Nd:

2). 3) 4) 1.2 NICTNICT DCRA Dihedral Corner Reflector micro-arraysdcra DCRA DCRA DCRA 3D DCRA PC USB PC PC ON / OFF Velleman K8055 K8055 K8055

第 55 回自動制御連合講演会 2012 年 11 月 17 日,18 日京都大学 1K403 ( ) Interpolation for the Gas Source Detection using the Parameter Estimation in a Sensor Network S. T

a) Extraction of Similarities and Differences in Human Behavior Using Singular Value Decomposition Kenichi MISHIMA, Sayaka KANATA, Hiroaki NAKANISHI a

013858,繊維学会誌ファイバー1月/報文-02-古金谷

渡辺(2309)_渡辺(2309)

磁気測定によるオーステンパ ダクタイル鋳鉄の残留オーステナイト定量

SGドリルシリーズ_CC2015.indd

4. C i k = 2 k-means C 1 i, C 2 i 5. C i x i p [ f(θ i ; x) = (2π) p 2 Vi 1 2 exp (x µ ] i) t V 1 i (x µ i ) 2 BIC BIC = 2 log L( ˆθ i ; x i C i ) + q

IPSJ SIG Technical Report Vol.2016-CE-137 No /12/ e β /α α β β / α A judgment method of difficulty of task for a learner using simple

untitled

Fig. 1 Hammer Two video cameras Object Overview of hammering test (14) (8) T s T s 2

TCP/IP IEEE Bluetooth LAN TCP TCP BEC FEC M T M R M T 2. 2 [5] AODV [4]DSR [3] 1 MS 100m 5 /100m 2 MD 2 c 2009 Information Processing Society of

DS0 0/9/ a b c d u t (a) (b) (c) (d) [].,., Del Barrio [], Pilato [], [].,,. [],.,.,,.,.,,.,, 0%,..,,, 0,.,.,. (variable-latency unit)., (a) ( DFG ).,

Studies of Foot Form for Footwear Design (Part 9) : Characteristics of the Foot Form of Young and Elder Women Based on their Sizes of Ball Joint Girth

1 Fig. 1 Extraction of motion,.,,, 4,,, 3., 1, 2. 2.,. CHLAC,. 2.1,. (256 ).,., CHLAC. CHLAC, HLAC. 2.3 (HLAC ) r,.,. HLAC. N. 2 HLAC Fig. 2

High performance PM-HSS Drills Powder HSS with SG Coating and the tool life is 2- times of conventional coated drills. Extremely precise positioning a

S-6.indd

Classic HD:ŠŸŠp”Ò:Discovery:‘‚ŠÞ:‚²„¤:Ÿ_Ł¶:Simulation_for_HRO.dvi

Appropriate Disaster Preparedness Education in Classrooms According to Students Grade, from Kindergarten through High School Contrivance of an Educati

A Study on Throw Simulation for Baseball Pitching Machine with Rollers and Its Optimization Shinobu SAKAI*5, Yuichiro KITAGAWA, Ryo KANAI and Juhachi

Vol.55 No (Jan. 2014) saccess 6 saccess 7 saccess 2. [3] p.33 * B (A) (B) (C) (D) (E) (F) *1 [3], [4] Web PDF a m

IPSJ SIG Technical Report Vol.2009-CVIM-167 No /6/10 Real AdaBoost HOG 1 1 1, 2 1 Real AdaBoost HOG HOG Real AdaBoost HOG A Method for Reducing

IPSJ SIG Technical Report Vol.2012-CG-148 No /8/29 3DCG 1,a) On rigid body animation taking into account the 3D computer graphics came

Table 1 Experimental conditions Fig. 1 Belt sanded surface model Table 2 Factor loadings of final varimax criterion 5 6

技術研究報告第26号

IPSJ SIG Technical Report Secret Tap Secret Tap Secret Flick 1 An Examination of Icon-based User Authentication Method Using Flick Input for

258 5) GPS 1 GPS 6) GPS DP 7) 8) 10) GPS GPS ) GPS Global Positioning System

4.1 % 7.5 %

IHI Robust Path Planning against Position Error for UGVs in Rough Terrain Yuki DOI, Yonghoon JI, Yusuke TAMURA(University of Tokyo), Yuki IKEDA, Atsus

F3000 SERIES FEATURES F3042 F3038 F F3052 F

IPSJ SIG Technical Report 1, Instrument Separation in Reverberant Environments Using Crystal Microphone Arrays Nobutaka ITO, 1, 2 Yu KITANO, 1

Vol.54 No (July 2013) [9] [10] [11] [12], [13] 1 Fig. 1 Flowchart of the proposed system. c 2013 Information

高硬度金型(60HRC) の高速切削

26 Development of Learning Support System for Fixation of Basketball Shoot Form

Journal of Textile Engineering, Vol.53, No.5, pp

IPSJ SIG Technical Report Vol.2013-GN-87 No /3/ Research of a surround-sound field adjustmen system based on loudspeakers arrangement Ak

Manufacturing Processes Machining Casting Process Welding, Bonding and Cutting Plastic Working Cutting Process Abrasive Machining

/ Motor Specifications Direct Motor Drive Ball Screws / Precision Ball Screw type MB / MB MB Precision Ball Screw type MB / MoBo C3 5 5 Features A 5-p

Fig.l Music score for ensemble Fig.Z Definition of each indicator Table I Correlation coefficient between hitting lag variation /,(n) and hitting cycl

75 unit: mm Fig. Structure of model three-phase stacked transformer cores (a) Alternate-lap joint (b) Step-lap joint 3 4)

( ) 2. ( ) 1. 1, kg CO2 1 2,000 kg 1 CO2 19 % 2,000 2, CO2 (NEDO) (COURSE50) 2008 COURSE50 CO2 CO2 10 % 20 %

A Higher Weissenberg Number Analysis of Die-swell Flow of Viscoelastic Fluids Using a Decoupled Finite Element Method Iwata, Shuichi * 1/Aragaki, Tsut

5b_08.dvi

IPSJ SIG Technical Report Vol.2014-ARC-213 No.24 Vol.2014-HPC-147 No /12/10 GPU 1,a) 1,b) 1,c) 1,d) GPU GPU Structure Of Array Array Of

J. Jpn. Inst. Light Met. 65(6): (2015)

橡A PDF

Fig. 1 Schematic construction of a PWS vehicle Fig. 2 Main power circuit of an inverter system for two motors drive

24 Depth scaling of binocular stereopsis by observer s own movements

IPSJ SIG Technical Report Vol.2012-HCI-149 No /7/20 1 1,2 1 (HMD: Head Mounted Display) HMD HMD,,,, An Information Presentation Method for Weara

PDF

248 Nippon Shokuhin Kagaku Kogaku Kaishi Vol. /-, No./,,.2,/. (,**0) 12 * * * Microencapsulation of Glutamine with Zein by a Solvent Evaporation Metho

Tetsu-to-Hagane Vol. 87 (2001) No. 5 Table 1. Physical properties of particles. (a) side view (b) front view Fig. 1. Experimental apparatus with semic

LD

1 7 ω ω ω 7.1 0, ( ) Q, 7.2 ( Q ) 7.1 ω Z = R +jx Z 1/ Z 7.2 ω 7.2 Abs. admittance (x10-3 S) RLC Series Circuit Y R = 20 Ω L = 100

最新耐震構造解析 ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 3 版 1 刷発行時のものです.

土木学会構造工学論文集(2009.3)

Fig. 3 Coordinate system and notation Fig. 1 The hydrodynamic force and wave measured system Fig. 2 Apparatus of model testing


Transcription:

MEC-3-59 NC High frequency variation speed control of spindle motor for self-excited chattering vibration suppression in NC Machine tools. Teruaki Ishibashi, Hiroshi Fujimoto (The University of Tokyo) Shinji Ishii, Kouji Yamamoto, Yuki Terada (MORI SEIKI Co. Ltd.) Abstract This paper proposes a spindle motor control for self-excited chatter vibration suppression in numerical control (NC) machine tools. In conventional NC machine tools, spindle speed is set to constant value during machining, and the spindle speed is determined according to analysis or operator s experience. The proposed method prevents self-excited chatter vibration by varying spindle speed with high frequency during machining. This method suppresses the disturbance deriving from cutting resistance by repetitive control, and archive spindle speed variation with high frequency by perfect tracking cotrol. Finally, we show the advantages of the proposed method by simulations and experiments. NC (NC machine tools, end milling, cutting-off processing, spindle speed control, self-exited chatter vibration, perfect tracking control, repetitive control. ). (NC) () (2) (3) (4)(8) (9) (0)(2) 2 Fig.. Experimental Fig. 2. Schematic diagram of plant. equipment. Table. Parameters of spindle. Driver GPA40L(WAKOGIKEN) Inertia J 6.8 0 3 kg m 2 Friction coefficient D 7.8 0 3 Nm s Torque coefficient K t 0.47 Nm/A (3) (4) (5) /6

3 Fig. 3. Block diagram of plant. Fig. 5. 5 Block diagram of self-exited chatter vibration. a [m] v s [m/s] h 0 [m] 4 h 0 = v s ( 2π ) (4) 2. 4 Fig. 4. Cutting off processing. 2 3 i [A] K t [Nm/A] T [Nm] T = K ti () F cut [Nm] J [kg m 2 ] D [Nm s] [rad/s] = Js + D (T F cut) (2) 3. 3 (3) G() F () Y () 3 Y () = G()F () (3) 32 4 (2) F n [N] y(t)[m] τ [s] y(t τ) 4 h [m] 5 h = y(t τ) y(t) (5) h [m] h 0 h F n K f [Pa] a 6 F n = ak f h (6) F n y G(j) 2 5 M [Ns 2 /m], D [Ns/m], K [N/m] h(s) = h 0 + ( e sτ )ak f G (7) c 8 + ( e j cτ )a lim K f (Φ + jh) = 0 (8) a lim Φ, H G 0 9, 0 + a lim K f [Φ( cos c τ) Hsin c τ] = 0 (9) Φsin c τ + H( cos c τ) = 0 (0) 9, 0 a lim a lim = () 2K f Φ( c ) 2/6

0 2 7 RVF[ ] Fig. 6. 0 0 0 0 2 0 3 6 Reference of spindle speed. Displacement of tool [µm] 2.5.5 0.5 0 0 2 0 0 RVA[ ] RVA, RVF (N 0 = 262 rad/s) Fig. 7. Dependence of RVA, RVF (N 0 = 262 rad/s). 4. 32 (2) 4 2 6 T [s] N 0 [rad/s] T N A [rad/s] RVA, RVF 2, 3 RVA = N A (2) N 0 RVF = 2π N 0 T (3) Table 2. 2 Parameters of chatter vibration. Feed rate v s Width of cut a 2 0 3 m/s 5 0 3 m Specific cutting force K t 300 MPa Dynamic mass M 0 Ns 2 /m Mechanical impedance B 200 Ns/m Dynamic rigidity K 5 0 5 N/m 42 0 4 0 6 0 8 0 0.2 0.4 0.6 0.8 RVF [-] (a) Dependence of RVF. Fig. 8. (c) RVF = 0.4. (b) RVF = 0.2. (d) RVF = 0.8. 8 RVF N 0 = 262 rad/s, RVA = 0. Dependence of RVFN 0 = 262 rad/s, RVA = 0.. 9 2 Fig. 9. Experimental equipment 2. 262 rad/s N 0 RVA, RVF 0.00 7 RVA 0.05 8(a) RVA = 0. RVF 8(b), 8(c), 8(d) RVF = 0.2, 0.4, 0.8 RVF = 0.2, 0.4 RVF = 0.8 RVF 43 9 3 0(a), (a) 0(b), (b) 0 RVA = 0.3, RVF = 0.0 RVA = 0.4, RVF = 3/6

[rad/s] ref (a) Spindle speed. (b) Vibration of tool. 3 Table 3. Cutting condition. End mill flutes 4 End mill ϕ 20 mm Radial depth of cut 20 mm Axial depth of cut 2 mm Work piece S25C Feed rate 643 mm/min (c) Vibration of tool (constant (d) Vibration of tool (variable speed. 2 RPTC Fig. 2. Repetitive Perfect tracking controller. 0 RVA = 0.3, RVF = 0.0 Fig. 0. Experimental result of chatter vibration (RVA = 0.3, RVF = 0.0). [rad/s] ref 3 Fig. 3. PSG) Periodic signal generator (PSG). (a) Spindle speed. (b) Vibration of tool. 4 Fig. 4. Disturbance table. (c) Vibration of tool (constant (d) Vibration of tool (variable RVA = 0.4, RVF = 0.02 Fig.. Experimental result of chatter vibration (RVA = 0.4, RVF = 0.02). 0.02 0(c), (c) (2) 800 Hz 0(d), (d) RVA, RVF 5. RVF RVF θ [rad] PTC 2 C PI p 00 rad/s 5 PTC 4/6

2 n n (5) PTC 45 x[k + ] = Ax[k] + Bu[k] (4) [k] = Cx[k] (5) 6 7 u 0 [k] = B ( z A)x d [k + ] (6) 0 [k] = z Cx d [k + ] (7) 52 0 e 89 = 0 P (s) + C PI(s)P (s) F cut(t) (8) e(t) = 0(t) (t) (9) F cut ˆF cut (t) = + C PI(s)P (s) e(t) (20) P (s) 3, 4 P (s)/(+c PI (s)p (s)) θ[i + ] 2 ˆθ[i + ] = θ[i] + [i] + ref[i] T u (2) 2 22 Q γ = 2 Q[z] = + γz + z 2 (22) γ + 2 6. 23 PSG 0000 [rad/s] ref (a) Spindle speed (constant [rad/s] ref [rad/s] (b) Compensation signal (constant F cut = 5 Fig. 5. 4 Table 4. Without compensation [rad/s] (c) Spindle speed (variable (d) Compensation signal (variable RPTC Simulation result of RPTC. Average of the error. with compensation.74.38 4 sinlθ (23) l=0 ref = 04.7 rad/s 5(a) 0.5 s 5(b) Q RVA = 0., RVF = 5(c), 5(d) 7. PSG 2000 ref = 04.7 rad/s 6(a) 6(c) 6.7 Hz 4 4 6(b), 6(d) 05.7 rad/s RVA = 0., RVF =.5 7 2 5/6

(a) Speed error (without compensation). (c) Frequency analysis (with compensation). Fig. 6. 7 6 [rad/s] (b) Speed error (with compensation). Frequency [Hz] (d) Frequency analysis (without compensation) RPTC Experimental result (Constant ref RVA = 0., RVF =.5 Fig. 7. Spindle speed (RVA = 0., RVF =.5). 4 8. NC RVA,RVF RVF S. Yoshimitu, S. Satonaka, Y. Kawano, Z. Dunwen and S. Yamashita, Two-dimensional Monitoring System for Tool Behavior in End Milling with Small Diameter Tool, Journal of JSPE, Vol. 77, No. 9, pp. 889 894(20)(in Japanese) 2 E. Shamoto, Mechanism and Suppression of Chatter VIbrations in Cutting, Electric Furnace Steel, Vol. No. 2, pp. 43 55(20)(in Japanese) 3 82, N. Suzuki, Chatter Vibration in Cutting, Part2, Journal of JSPE, Vol. 76, N0. 4, pp. 404 407(200)(in Japanese) 4 H. Chen, D. Li, S. Huang and P. Fu, Study on the cutting force prediction of supercritical material millling, ICNC, Vol. 3, pp. 48 52(200) 5 D. Kurihara, Y. Kakinuma and S. Katsura, Sensor-less cutting force monitoring using parallel disturbance observer, International Journal of Automation Technology, Vol. 3, No. 4, pp. 45 42(2009) 6 Y. Lakinuma, Y. Sudo and T. Aoyama, Detection of chatter vibration in end milling applying disturbance observer, Annals of the CIRP, Vol.60, No., pp. 09 2(20) 7 T. Shimizu, H. Fujimoto, and Y. Hori, Force sensorless control of cutting force for NC machine tools based on the response surface method, IIC 053, pp. 23 28(20)(in Japanese) 8 T. Ishibashi and H. Fujimoto, Force Sensorless Control of Cutting Resistance for NC Machine Tools by Spindle Motor Control Utilizing Variable Pulse Number T method, IIC 8 028(203)(in Japanese) 9 N. Suzuki, Chatter Vibration in Cutting, Part, Journal of JSPE, Vol. 76, N0. 3, pp. 280 284(200)(in Japanese) 0 S. Seguy, T. Insperger, L. Arnaud, G. Dessein and G. Peigné, SUPPRESSION OF PERIOD DOUBLING CHATTER IN HIGH SPEED MILLING BY SPINDLE SPEED VARIATION, Journal of Machining Science and Technology, Vol. 5, pp. 53 7(20) S. Seguy, T. Insperger, L. Arnaud, G. Dessein and G. Peigné, On the stability of high speed milling with spindle speed variation,the International Journal of Advanced Manufacturing Technology, Vol. 48, pp. 883 895(200) 2 D. Wu and K. Chen, Chatter suppression in fast tool servo-assisted turning by spindle speed variation, International Journal of Machine Tools and Manufacture, Vol. 50, pp. 038 047(200) 3 H. NishinaH. Fujimoto, RRO Compensation of Hard Disk Drives with RPTC for Discrete Track Media, IIC 08 65, pp. 25 30(2008)(in Japanese). 4 T. NakaiH. Fujimoto, Proposal of harmonic current suppression method of PM motor based on repetitive perfect tracking control with speed variation, SPC 08 30, pp. 55 60(2008)(in Japanese). 5 H. Fujimoto, Y. Hori, A. Kawamura Perfect Tracking Control Method Based on Multirate Feedforward Control, Journal of SICE, Vol. 36, No. 9, pp. 766 772(2000)(in Japanese). 6/6