Similar documents

2007 3DCG : M DCG 3DCG 3DCG 3D (huristic method) C++

日本内科学会雑誌第98巻第4号

日本内科学会雑誌第97巻第7号

xx/xx Vol. Jxx A No. xx 1 Fig. 1 PAL(Panoramic Annular Lens) PAL(Panoramic Annular Lens) PAL (2) PAL PAL 2 PAL 3 2 PAL 1 PAL 3 PAL PAL 2. 1 PAL

Ł\”ƒ-2005

第90回日本感染症学会学術講演会抄録(I)

IP IIS Construction of Overhead View Images by Estimating Intrinsic and Extrinsic Camera Parameters of Multiple Fish-Eye Cameras Shota Kas

日本内科学会雑誌第102巻第4号

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

1 Kinect for Windows M = [X Y Z] T M = [X Y Z ] T f (u,v) w 3.2 [11] [7] u = f X +u Z 0 δ u (X,Y,Z ) (5) v = f Y Z +v 0 δ v (X,Y,Z ) (6) w = Z +

Input image Initialize variables Loop for period of oscillation Update height map Make shade image Change property of image Output image Change time L

O1-1 O1-2 O1-3 O1-4 O1-5 O1-6

9 5 ( α+ ) = (α + ) α (log ) = α d = α C d = log + C C 5. () d = 4 d = C = C = 3 + C 3 () d = d = C = C = 3 + C 3 =

放射線専門医認定試験(2009・20回)/HOHS‐05(基礎二次)

プログラム

さくらの個別指導 ( さくら教育研究所 ) A 2 2 Q ABC 2 1 BC AB, AC AB, BC AC 1 B BC AB = QR PQ = 1 2 AC AB = PR 3 PQ = 2 BC AC = QR PR = 1


6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

VRSJ-SIG-MR_okada_79dce8c8.pdf

2010 : M

日歯雑誌(H19・5月号)済/P6‐16 クリニカル  柿木 5

5 c P 5 kn n t π (.5 P 7 MP π (.5 n t n cos π. MP 6 4 t sin π 6 cos π 6.7 MP 4 P P N i i i i N i j F j ii N i i ii F j i i N ii li i F j i ij li i i i

プログラム

2016.

第121回関東連合産科婦人科学会総会・学術集会 プログラム・抄録

85 4

[2] 2. [3 5] 3D [6 8] Morishima [9] N n 24 24FPS k k = 1, 2,..., N i i = 1, 2,..., n Algorithm 1 N io user-specified number of inbetween omis

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =

& Vol.5 No (Oct. 2015) TV 1,2,a) , Augmented TV TV AR Augmented Reality 3DCG TV Estimation of TV Screen Position and Ro

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,,

2). 3) 4) 1.2 NICTNICT DCRA Dihedral Corner Reflector micro-arraysdcra DCRA DCRA DCRA 3D DCRA PC USB PC PC ON / OFF Velleman K8055 K8055 K8055

dy = sin cos y cos () y () 1 y = sin 1 + c 1 e sin (3) y() () y() y( 0 ) = y 0 y 1 1. (1) d (1) y = f(, y) (4) i y y i+1 y i+1 = y( i + ) = y i

limit&derivative

弾性定数の対称性について

2003/3 Vol. J86 D II No Fig. 1 An exterior view of eye scanner. CCD [7] CCD PC USB PC PC USB RS-232C PC

さくらの個別指導 ( さくら教育研究所 ) A a 1 a 2 a 3 a n {a n } a 1 a n n n 1 n n 0 a n = 1 n 1 n n O n {a n } n a n α {a n } α {a

スライド 1

5104-toku3.indd

(1) (2) (3) (4) (5) 2.1 ( ) 2


情報処理学会研究報告 IPSJ SIG Technical Report Vol.2015-CVIM-195 No /1/22 AR マーカ除去のための実時間背景画像変形 *1 1 1 Abstract 本稿では, 拡張現実感で用いられる AR マーカの違和感のない視覚的除去を実現するた

4 4 θ X θ P θ 4. 0, 405 P 0 X 405 X P 4. () 60 () 45 () 40 (4) 765 (5) 40 B 60 0 P = 90, = ( ) = X

70 : 20 : A B (20 ) (30 ) 50 1

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

0.45m1.00m 1.00m 1.00m 0.33m 0.33m 0.33m 0.45m 1.00m 2


v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

A(6, 13) B(1, 1) 65 y C 2 A(2, 1) B( 3, 2) C 66 x + 2y 1 = 0 2 A(1, 1) B(3, 0) P 67 3 A(3, 3) B(1, 2) C(4, 0) (1) ABC G (2) 3 A B C P 6

lim lim lim lim 0 0 d lim 5. d 0 d d d d d d 0 0 lim lim 0 d

proc.dvi

B

抄録/抄録1    (1)V

IPSJ SIG Technical Report Vol.2012-IS-119 No /3/ Web A Multi-story e-picture Book with the Degree-of-interest Extraction Function

5D1 SY0004/14/ SICE 1, 2 Dynamically Consistent Motion Design of Humanoid Robots even at the Limit of Kinematics Kenya TANAKA 1 and Tomo

VG-145 / VG-140 / VG-130 / VG-120 取扱説明書

1).1-5) - 9 -

main.dvi

DV-AR11s

(4) P θ P 3 P O O = θ OP = a n P n OP n = a n {a n } a = θ, a n = a n (n ) {a n } θ a n = ( ) n θ P n O = a a + a 3 + ( ) n a n a a + a 3 + ( ) n a n

DMS300

27 AR

dvipsj.4852.dvi

IPSJ SIG Technical Report Vol.2009-DPS-141 No.20 Vol.2009-GN-73 No.20 Vol.2009-EIP-46 No /11/27 1. MIERUKEN 1 2 MIERUKEN MIERUKEN MIERUKEN: Spe

IPSJ SIG Technical Report GPS LAN GPS LAN GPS LAN Location Identification by sphere image and hybrid sensing Takayuki Katahira, 1 Yoshio Iwai 1

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

Part () () Γ Part ,

t θ, τ, α, β S(, 0 P sin(θ P θ S x cos(θ SP = θ P (cos(θ, sin(θ sin(θ P t tan(θ θ 0 cos(θ tan(θ = sin(θ cos(θ ( 0t tan(θ

i

研修コーナー

1 (1) ( i ) 60 (ii) 75 (iii) 315 (2) π ( i ) (ii) π (iii) 7 12 π ( (3) r, AOB = θ 0 < θ < π ) OAB A 2 OB P ( AB ) < ( AP ) (4) 0 < θ < π 2 sin θ

tnbp59-21_Web:P2/ky132379509610002944

2007/8 Vol. J90 D No. 8 Stauffer [7] 2 2 I 1 I 2 2 (I 1(x),I 2(x)) 2 [13] I 2 = CI 1 (C >0) (I 1,I 2) (I 1,I 2) Field Monitoring Server

熊本県数学問題正解

07.報文_及川ら-二校目.indd

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π

パーキンソン病治療ガイドライン2002

21 e-learning Development of Real-time Learner Detection System for e-learning


Σ A Σ B r Σ A (Σ A ): A r = [ A r A x r A y r z ] T Σ B : B r = [ B r B x r B y r z ] T A r = A x B B r x + A y B B r y + A z B B r z A r = A R B B r


[1] SBS [2] SBS Random Forests[3] Random Forests ii

VR-330 / VR-320 / VR-310 取扱説明書

all.dvi

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

Canon Industrial Imaging Platform Vision Edition 使用説明書

it-ken_open.key

学習内容と日常生活との関連性の研究-第2部-第6章

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

光学


II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

_0212_68<5A66><4EBA><79D1>_<6821><4E86><FF08><30C8><30F3><30DC><306A><3057><FF09>.pdf

cm H.11.3 P

2009 : M DCG 3 4 3

Z340_ManualCover_JP.ai


Transcription:

24 21 21115025

i 1 1 2 5 2.1.................................. 6 2.1.1........................... 6 2.1.2........................... 7 2.2...................................... 8 2.3............................ 11 2.4.............................. 12 2.5........................... 15 2.6....................... 17 2.6.1........ 17 2.7.......... 20 2.7.1................................ 20 2.7.2..... 21 3 22 3.1.................................. 22 3.2...................................... 23 3.3................................... 24 3.4......................... 26 3.5........................ 28 4 30 4.1................................... 30

ii 4.2.............................. 31 4.3.............. 31 5 34 36 37

1 1 (Virtual Reality: VR) [1][2] [3] VR VR 3 VR 1 1 1

1 2 [4] [5] 2 6 (Inverse Kinematic: IK) [6] 2 Pamplona 1 AR [7] 1 ( ) (CV) [8] ARToolKit 6 [9]

1 3 PC VR/MR/AR 0%

1 4 2 3 4 5

5 2 [8] 6 ARToolKit AR 6 ( 2.1) IP MP 1 CM 2 4 DIP PIP 1 MP 2 4 MP 2 MP 2.1 ( ) DIP PIP MP IP CM 2.1:

2 6 2.1: 2.1 2.1.1 [10] 2.2 IP MP CM( ) CM( ) 0 80 0 60 0 90 0 60 DIP PIP MP( ) MP( ) 0 80 0 100 0 90 25 25 0 80 0 100 0 90 25 25 0 80 0 100 0 90 25 25 0 80 0 100 0 90 25 25 2.2:

2 7 2.1.2 i(i = 1 4) i = 1 i = 4 0 DIP PIP [11]( 2.2) PIP MP ( ) S [12]( 2.3) IP MP ( 2.4) MP CM ( ) S ( 2.5) 2.2: DIP PIP 2.3: PIP MP ( )

2 8 2.4: IP MP 2.5: MP CM ( ) 2.2 2.4 2.2 DIP θ i1 (= f θi1 (θ i2 )) 2.1 2.4 IP θ 01 (= f θ01 (θ 02 )) 2.2 θ i2 i PIP θ 02 MP i MP 2.3 MP ( ) θ i3 i MP ( ) θ i4 i MP ( ) f θi1 (θ i2 ) = 2 3 θ i2 (2.1) f θ01 (θ 02 ) = 4 3 θ 02 (2.2) { (25 0.5 (θ i3 60.0)) θ i4 (25 0.5 (θ i3 60.0)) (θ i3 60 ) 25 θ i4 25 (θ i3 < 60 ) (2.3) 2.2 (Forward Kinematics: FK) 2.1 Denavit-Hartenberg [13] i DH

2 9 2.3 DH 2.4 2.6 2.7 a α d θ a α d θ 1 0 180 0 θ i4 90 2 0 90 0 θ i3 3 L i3 0 0 θ i2 4 L i2 0 0 θ i1 5 L i1 0 0 0 2.3: i DH a α d θ 1 0 90 0 θ 03 2 0 90 0 θ 04 90 3 L 03 90 0 θ 02 4 L 02 0 0 θ 01 5 L 01 0 0 0 2.4: DH θ i1 L i1 θ 01 L 01 θ i2 L i2 θ θ L i4 i3 i3 θ 02 L 02 θ 04 03 L 03 θ 2.6: i DH 2.7: DH 2.3 i F K i (θ i4, θ i3, θ i2, θ i1 ) 2.4 2.4 F K 0 (θ 04, θ 03, θ 02, θ 01 ) 2.5 F K i (θ i4, θ i3, θ i2, θ i1 ) = L i1 sin θ i4 cos(θ i3 + θ i2 + θ i1 ) +L i2 sin θ i4 cos(θ i3 + θ i2 ) + L i3 sin θ i4 cos θ i3 L i1 cos θ i4 cos(θ i3 + θ i2 + θ i1 ) +L i2 cos θ i4 cos(θ i3 + θ i2 ) + L i3 cos θ i4 cos θ i3 L i1 sin(θ i3 + θ i2 + θ i1 ) + L i2 sin(θ i3 + θ i2 ) + L i3 sin θ i3 (2.4)

2 10 F K 0 (θ 04, θ 03, θ 02, θ 01 ) = L 01 cos θ 04 sin θ 03 cos(θ 02 + θ 01 ) L 01 sin θ 04 sin(θ 02 + θ 01 ) +L 02 cos θ 04 sin θ 03 cos θ 02 L 02 sin θ 04 sin θ 02 +L 03 cos θ 04 sin θ 03 L 01 cos θ 03 cos(θ 02 + θ 01 ) + L 02 cos θ 03 cos θ 02 + L 03 cos θ 03 L 01 sin θ 04 sin θ 03 cos(θ 02 + θ 01 ) + L 01 cos θ 04 sin(θ 02 + θ 01 ) +L 02 sin θ 04 sin θ 03 cos θ 02 + L 02 cos θ 04 sin θ 02 +L 03 sin θ 04 sin θ 03 (2.5) DIP θ i1 IP θ 01 2.1 2.2 2.1 2.4 2.2 2.5 2.6 i F K i (θ i4, θ i3, θ i2 ) 2.7 F K 0 (θ 04, θ 03, θ 02 ) F K i (θ i4, θ i3, θ i2 ) = F K 0 (θ 04, θ 03, θ 02 ) = L i1 sin θ i4 cos(θ i3 + 5 3 θ i2) + L i2 sin θ i4 cos(θ i3 + θ i2 ) +L i3 sin θ i4 cos θ i3 L i1 cos θ i4 cos(θ i3 + 5 3 θ i2) + L i2 cos θ i4 cos(θ i3 + θ i2 ) +L i3 cos θ i4 cos θ i3 L i1 sin(θ i3 + 5 3 θ i2) + L i2 sin(θ i3 + θ i2 ) + L i3 sin θ i3 L 01 cos θ 04 sin θ 03 cos 7 3 θ 02 L 01 sin θ 04 sin 7 3 θ 02 +L 02 cos θ 04 sin θ 03 cos θ 02 L 02 sin θ 04 sin θ 02 +L 03 cos θ 04 sin θ 03 L 01 cos θ 03 cos 7 3 θ 02 + L 02 cos θ 03 cos θ 02 + L 03 cos θ 03 L 01 sin θ 04 sin θ 03 cos 7 3 θ 02 + L 01 cos θ 04 sin 7 3 θ 02 +L 02 sin θ 04 sin θ 03 cos θ 02 + L 02 cos θ 04 sin θ 02 +L 03 sin θ 04 sin θ 03 (2.6) (2.7)

2 11 2.3 6 AR 2.8 2.8: CSV LUT CSV LUT (x i, y i ) AR 3 6 3 (x i, y i ) AR- ToolKit ( ) (x i, y i ) L t 2.9 2.8

2 12 X F Z Y L t C Y X ( x i, yi ) 2.9: L t = C + te (2.8) t C e 2.9 F 6 F L t F 2.1 2.4 2.1.2 i f li (θ i3 ) PIP θ i2 (= f θi2 (θ i3 )) 2.3 2.2 MP ( )

2 13 θ i4 MP ( ) f θi2 (θ i3 ) = α i θ i3 3 + β i θ i3 2 + γ i θ i3 (2.9) α i, β i, γ i F K i (θ i4, θ i3, θ i2 ) f θi2 (θ i3 ) i f li (θ i3 ) 2.10 L i1 cos θ 04 cos 5 3 (α iθ 3 i3 + β i θ 2 i3 + γ i θ i3 ) + θ i3 +L i2 cos θ i4 cos(α i θ 3 i3 + β i θ 2 i3 + γ i θ i3 + θ i3 ) + L i3 cos θ i4 cos θ i3 f li (θ i3 ) = L i1 sin θ 04 cos 5 3 (α iθ 3 i3 + β i θ 2 i3 + γ i θ i3 ) + θ i3 +L i2 sin θ i4 cos(α i θ 3 i3 + β i θ 2 i3 + γ i θ i3 + θ i3 ) + L i3 sin θ i4 cos θ (2.10) i3 L i1 sin 5 3 (α iθ 3 i3 + β i θ 2 i3 + γ i θ i3 ) + θ i3 +L i2 sin(α i θ 3 i3 + β i θ 2 i3 + γ i θ i3 + θ i3 ) + L i3 sin θ i3 f l0 (θ 03 ) MP θ 02 (= f θ02 (θ 03 )) 2.5 2.11 CM ( ) θ 04 f θ02 (θ 03 ) = α 0 θ 03 3 + β 0 θ 03 2 + γ 0 θ 03 (2.11) α 0, β 0, γ 0 F K 0 (θ 04, θ 03, θ 02 ) f θ02 (θ 03 ) i f l0 (θ 03 ) 2.12 f l0 (θ 03 ) = L 01 cos θ 04 sin θ 03 cos 7 3 (α 0θ 03 3 + β 0 θ 03 2 + γ 0 θ 03 ) L 01 sin θ 04 sin 7 3 (α 0θ 03 3 + β 0 θ 03 2 + γ 0 θ 03 ) +L 02 cos θ 04 sin θ 03 cos(α 0 θ 03 3 + β 0 θ 03 2 + γ 0 θ 03 ) L 02 sin θ 04 sin(α 0 θ 03 3 + β 0 θ 03 2 + γ 0 θ 03 ) + L 03 cos θ 04 sin θ 03 L 01 cos θ 03 cos 7 3 (α 0θ 03 3 + β 0 θ 03 2 + γ 0 θ 03 ) +L 02 cos θ 03 cos(α 0 θ 03 3 + β 0 θ 03 2 + γ 0 θ 03 ) + L 03 cos θ 03 L 01 sin θ 04 sin θ 03 cos 7 3 (α 0θ 03 3 + β 0 θ 03 2 + γ 0 θ 03 ) +L 01 cos θ 04 sin 7 3 (α 0θ 03 3 + β 0 θ 03 2 + γ 0 θ 03 ) +L 02 sin θ 04 sin θ 03 cos(α 0 θ 03 3 + β 0 θ 03 2 + γ 0 θ 03 ) +L 02 cos θ 04 sin(α 0 θ 03 3 + β 0 θ 03 2 + γ 0 θ 03 ) + L 03 sin θ 04 sin θ 03 (2.12)

2 14 f li (θ i3 ) f l0 (θ 03 ) 2.8 L t L t f li (θ i3 ) f l0 (θ 03 ) L s 2.13 L s = P + sd (2.13) s P d 2.8 L t Q L s R QR QR = R Q 2.8 2.13 QR = (P + sd) (C + te) = P C + sd te (2.14) QR QR e QR d QR e = 0 (2.15) QR d = 0 (2.16) 2.15 2.16 t s t = { d 2 (CP e) (e d)(cp d)} e 2 d 2 (e d) 2 (2.17) s = {(e d)(cp e) e 2 (CP d)} e 2 d 2 (e d) 2 (2.18)

2 15 CP = P C t 2.8 L t Q s 2.13 L s R L s 0.0 s 1.0 s < 0.0 R 1.0 < s R L s R QR L t Q F 2.5 3 Cyclic-Coordinate Descent(CCD) [14] CCD 1 CCD 2.10 ( ) e ( ) g 1. c e E c g G 2. 1. E G 3. c 2. ( ) 4. 5. c b 2. 4. a

2 16 (1) (2) (3) (4) c b g a (7) g c b a e G E g c b a c g a b g c b a e e e e G E (5) (6)(2)~(5)! "#$%&' g c b a E G c g a b e e 2.10: CCD

2 17 6. 2. 5. CCD damping( ) 2.1 2.2 i damping DIP IP PIP θ i2 MP θ 02 DIP θ i1 IP θ 01 2 e G damping 2.6 2.6.1 2.2 2.5 DIP θ i1 PIP θ i2 DIP θ i1 f θi1 (θ i2 ) PIP θ i2j MP ( ) θ i3j f c θ i2 (θ i3j ) f c θ i3 (θ i2j ) j 0 j n j = 0 j = n θ i2j, θ i3j t j f ct θ i2 (t j ) f ct θ i3 (t j ) t n

2 18 MP ( ) θ i4 θ i4 θ i4 t j fθ t i4 (t j ) 2.11 2.12 fθ t i4 (t j ) fθ t i2 (t j ) fθ t i3 (t j ) 2.11: 2.12: F K i (θi4, θi3, θi2) 2.13 2.15

2 19 θ i3 j c ( θ θ i2 j i3 f ) ct θ i 3 f ( t j ) θ i3n t θ i 3 f ( t j ) θ i2 j 2.13: θ i2n θ i3 j θ i2 j c ( θ θ i3 j i2 f ) t θ i 2 f ct θ i 2 f ( t ( t j j ) ) θ i2n 2.14: θ i3n θ i4 j t θi4 f ( t j ) θ i4 n 2.15: θ i4n

2 20 2.7 2.7.1 i k(k i) k k kd, r kd, 2.6 L kd S kd 2.16 r kd L kd kd S kd 2.16: S kd i F K i (θi4, θi3, θi2) F i F i F i

2 21 2.7.2 2.5 2.5:

22 3 3.1 ( ) ( 0% 100% 0% 400%)

3 23 2 200% 100% f θi1 (θ i2 ) f θ01 (θ 02 ) f θi2 (θ i3 ) f θ02 (θ 03 ) 2.6 2.7 i(i=1 4) i(i = 1 4) i 3.2 3.1 ( ( (mm)) 2 ) 1100000000 1670000000 1350000000 1360000000 3.1: 2.3 CSV LUT

3 24 LUT 3.1 3.1: AR 3.3 3.2 3.2 3.3

3 25 ( (mm) (mm)) 140000 200000 165000 177000 3.2: 3.2: ( 260000) 3.3: ( 230000) open 3.4 3.4:

3 26 AR 3.4 0 400 29 3.5 3.13 3.14 3.15 3.5: :400% 3.6: :0% 3.7: :200% 3.8: :300% 3.9: :200% 3.10: :100%

3 27 3.11: :150% 3.12: :100% 3.13: :50% 3.14:

3 28 3.15: 3.14 3.15 29 3.14 3.5 3.15 3.15 131 165 139 175 200

3 29 5

30 4 4.1 CPU : Pentium(R) Dual-Core CPU E5200 2.50GHz PC C++ BUFFALO USB BSW20K04 640 480 pixel( 30fps) 320 240 pixel 640 480 pixel 4.1 4.1:

4 31 4.2 2.6 2.7 4.1 (msec) 14.1 16.3 6.0 0.2 CG 3.3 36.9 4.1: 30fps 74% 10 12fps 4.3 7 1: 4: 7: 3 1: 2:

4 32 3: 4.2 4.4( CG) 4.5 4.7 4.2: 4.3: 4.4: 4.5: 1 4.6: 2

4 33 4.7: 3 1 5.67 2 5.0 3 4.67 4 MP PIP 3.5 CG 1 MP ( ) MP ( ) 4

34 5 0% 400% 3.2 3.3

5 35 MP ( )

36

37 [1] VR Vol.12 No.1 pp.57-65 2007. [2] Vol.11 No.4 pp.469-477 2006. [3] 2012 [4] Vol.J81-D-2 No.1 pp.45-53 1998. [5] IS3-64 2010. [6] (CD-ROM) 2004. [7] Vitor F. Pamplona Leandro A. F. Fernandes Joao Prauchner Luciana P. Nedel e Manuel M. Oliveira The Image-Based Data Glove Proceedings of X Symposium on Virtual Reality (SVR 2008) pp.204-211 2008 [8] Sanshiro Yamamoto Kenji Funahashi Yuji Iwahori A Study for Vision Based Data Glove Considering Hidden Fingertip with Self-Occlusion Proc. SNPD2012 pp 315-320 2012.

38 [9] Billinghurst Mark Vol.4 No.4 pp.607-616 1999. [10] 1989. [11] ELKOURA G and SINGH K Handrix Animating the Human Hand Symposium on Computer Animation - SCA, pp. 110-119, 2003 [12] 2002. [13] S. Hayati K. Tso and G. Roston Robot Geometry Calibration Trans. of IEEE Robotics and Automation Vol.2 pp.947-951 1988. [14] Chris Welman. Inverse kinematics and geometric constraints for articulated figure manipulation M.Sc Thesis Simon Fraser University 1993.