Ginzburg-Landau A A Kyoto Univ. Kobe Design Univ. A N. Tsukamoto, H. Fujisaka, K. Ouchi A Ginzburg-Landau ψ = ψ + (1 + ic 1 ) 2 ψ (1 + ic 2 ) ψ 2 ψ (1

Similar documents
< F31332D8B638E FDA8DD E F1292E6A>

Ò ÑÔÏÓ ÐÎ ÆÉ z uññòõ w g ÌÊÉÇÍ ˆ ˆ Ð Ö Ò z Ò ÑÔÏÓ Ð ÓÑÐÒÒ ÎÔÖÏÖ ÎÖÐÖÑÕ uôöðöõ Î~ËÍÂÌÉÂ ÑÑÒÕÊ ÉÊÍ ÌÆÇÇ Î Ê ÈÂÊÈÇÊÓÑÐÒÒ ÇÂ z uêèéæíçî ÍÇÊÈÍÂ t Ê Ç ÈÍÂ Â

„¤‰ƒ‰IŠv‚æ‡S−ª†{“Å‘IB5-97

„¤‰ƒ‰IŠv‚æ‡S−ª†{“Å‘IB5-97

<4D F736F F D EC08E7B8FF38BB BD90AC E A837A815B B83578C668DDA97702E646F63>

<4D F736F F D BB388E78CA48B B E6338AAA2B92B290AE2B E646F63>

<4D F736F F D2088CF88F589EF8E9197BF F690EC816A2E646F63>

<4D F736F F D BB388E78CA48B B E6328AAA D655F92B290AE82B382E782C E646F63>

ÊÈÌÊ fêôöôï Ö É É ~ Œ ~ Œ ÈÍÉÆÍ s Ê É Â Ê ÉÉÆÍÇÉ Ê Ê É Ê ÈÍv ÈÍ É ÈÍ Â ÇÍ vèé Ê Ê É ÈÉËÈÆ ÊÌÉ Ê~Æ Ê Ê ÈÍfÆ Ê ÊÉÆÉÊ Ê Ê ÈÍ Ê ÈÉËÈÆ

fm

<4D F736F F D208B7B8DE890BC5F90E096BE8E9197BF5F2D F4390B32E646F63>

untitled

<4D F736F F D2088CF88F589EF8E9197BF816991E596EC927C A2E646F63>

<4D F736F F D2092B28DB882C982C282A282C42E646F63>

Microsoft Word - ’ìfià„GflV‘é“ÄŁ]›¿0909.doc

< F31332D817992B48DC A8CCB8E9F81458CA28E942E6A7464>

Microsoft Word - 484号.doc

<4D F736F F D2088CF88F589EF8E9197BF81698CA28E9490E78DCE816A2D312E646F63>

Microsoft Word - 99

Microsoft Word - p2-11堀川先生_紀要原稿_ final.doc

Microsoft Word - 99

untitled

<4D F736F F D F8DE98BCA8CA797A78FAC8E9988E397C3835A E815B82CC8A E646F63>

Microsoft Word Summit E XL Japanese manual 1.5.doc

<4D F736F F D F8DE98BCA8CA797A78FAC8E9988E397C3835A E815B82CC8A E646F63>

<4D F736F F D F8DE98BCA8CA797A78FAC8E9988E397C3835A E815B82CC8A E646F63>

‰IŠv9802 (WP)

Microsoft Word - p12-21紀要論文_ジョさん_0908.doc

Microsoft Word - TR4_Effort.doc

ロシア語便覧 1

<4D F736F F D F8DE98BCA8CA797A78FAC8E9988E397C3835A E815B82CC8A E646F63>

fm

ÍÂ~ÊÂ ÊÊ ÇÍ ÌÉÊÊÌÊÇÍÂÈÍ Ê ÊÌÊÊÍÉÉÉÆÉÉÍÆÂsÊÂ ÌÉÊ~ÊsÊÆÇ ÉÉÊsÆÍÆÊÉ~ÇÈÉÇÉÉÊsÉÆÆjÇÆÇÉÉÉÆÉÉÍ ÆÂ ÊÊÍÉÂÇÍÌÉÊsÊÊÇÉÂÊÍÍÉwÊÊÂÌÉ t ÊwÎÔ ÑÊÔÖÏÑ Ö Ñ ÑÒÔÇ ÈÍÍÇÉÊÊÍÂÇ

(WP)

untitled

Microsoft Word - GrCadSymp1999.doc

Microsoft Word - −C−…−gŁš.doc

Microsoft Word - ’V‘é−gŁš.doc

<4D F736F F D F8DE98BCA8CA797A78FAC8E9988E397C3835A E815B82CC8A E646F63>

untitled

Microsoft Word - kawanushi 1.doc

Microsoft Word - AS017U.b......_...j.doc

„¤‰ƒ‰IŠv‚æ‡S−ª†{“Å‘IB5-97

Ë,, ÌÓ ÏÓÈ ÂÈ? ÚÓÚ, ÚÓÚ

obs_usersguide.book

ロシア語ハラショー

Microsoft Word - GraphLayout1-Journal-ver2.doc

Microsoft Word _Rev01-jp.doc

ロシア人の名前

fm

Microsoft Word _jap .doc

<4D F736F F D20835E A83415F967B95B631322E348B65926E8F4390B381698DC58F49816A>

Microsoft Word - C.....u.K...doc

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

<45532D C8D5D3EFCBB5C3F7CAE92E706466>


< D C8D5D3EFB0E6CBB5C3F7CAE92E706466>

08-Note2-web

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

<45532D C8D5CEC4B0E6CBB5C3F7CAE92E504446>

Holton semigeostrophic semigeostrophic,.., Φ(x, y, z, t) = (p p 0 )/ρ 0, Θ = θ θ 0,,., p 0 (z), θ 0 (z).,,,, Du Dt fv + Φ x Dv Φ + fu +

Ê u g } }{ ~ Ê Blue Tooth Ì d LAN ÊÊÊ sèííöïõöñ~ Ê Ê y ÑÔ ÑÎ ÉÈ ÑÑÒÕ LSI Ç ÌÍÍÉÆÍ ÑÑÒÕ LSI séê ÇÍÌÉt Ê LSI Ì É ÈÍÉÆÉÌÊÎ ÈÍ séæí }ÊÑÑÒÕ LSI Ê CMOS ÒÓÏÑ

< D C8D5CEC4B0E6CBB5C3F7CAE92E706466>

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

fm

š š o š» p š î å ³å š š n š š š» š» š ½Ò š ˆ l ˆ š p î å ³å š î å» ³ ì š š î å š o š š ½ ñ š å š š n n å š» š m ³ n š

(%) (%) WECPNL WECPNL WECPNL WECPNL

a L = Ψ éiγ c pa qaa mc ù êë ( - )- úû Ψ 1 Ψ 4 γ a a 0, 1,, 3 {γ a, γ b } η ab æi O ö æo ö β, σ = ço I α = è - ø çèσ O ø γ 0 x iβ γ i x iβα i

œ 2 É É


GJG160842_O.QXD

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )



XXXXXX XXXXXXXXXXXXXXXX


講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H


untitled

RI850V4 V2 リアルタイム・オペレーティング・システム ユーザーズマニュアル 解析編


1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

プログラム

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

AC Modeling and Control of AC Motors Seiji Kondo, Member 1. q q (1) PM (a) N d q Dept. of E&E, Nagaoka Unive

IA

,, 2. Matlab Simulink 2018 PC Matlab Scilab 2

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

H.Haken Synergetics 2nd (1978)

time.book

note1.dvi

ohpr.dvi

0304_ふじみ野地福_本編_01

Microsoft Word _030510_Transcosmos_J.doc

首都圏チェーンストアチラシ出稿状況調査 リニューアル 2014 年 6 Sample 月版版

Microsoft Word - 印刷原稿富山産業政策集積2.doc

Shunsuke Kobayashi 1 [6] [11] [7] u t = D 2 u 1 x 2 + f(u, v) + s L u(t, x)dx, L x (0.L), t > 0, Neumann 0 v t = D 2 v 2 + g(u, v), x (0, L), t > 0. x

(a f (b f (c vv (d s (e s u (f s (g s ªªª ªªª } ªªª vv/z ««/ «z««s /zçèíéæí Éÿ ÊÊÊ yê~ ÊÊÊ y v Ò ÑÉy ÊÊvv ÑÑÒÕ ÑÑÒÕÌÊ Š Švv ÖÐÒÒ ÑÒ ÑÕ Ì ~Êvv ~{ Ê ~ÈÉ

Transcription:

Ginzburg-Landau A A Kyoto Univ. Kobe Design Univ. A N. Tsukamoto, H. Fujisaka, K. Ouchi A Ginzburg-Landau ψ = ψ + (1 + ic 1 ) 2 ψ (1 + ic 2 ) ψ 2 ψ (1) Hopf [1] c 1, c 2 (1) { } ψ n+1 (r) = dr J(r r )ψ n (r ) ψ n (r ) 2 (1+ic2 )/2 + δ δ > J(r) = e (1+ic 1) 2 δ(r) (1) Ref.[2] ψ n 2 δ (2) δ θ n = arg ψ n c 2 log ψ n (2) e iθn+1(r) = dr J(r r )e iθ n(r )/ dr J(r r )e iθ n(r ) (3) 1+ic2 θ n (3) Benjamin-Feir (1 + c 1 c 2 = ) (1) (1) ψ ( ) (2) (2) (1) (2) (3) (1) (2) [1] I. S. Aranson, L. Kramer, Rev. Mod. Phys., 74, 99 (22). [2] S. Uchiyama, H. Fujisaka, Phy. Rev. E, 56, 99 (1997).

Synchronization of excitatory neurons with strongly heterogeneous phase response Yasuhiro Tsubo, Jun-nosuke Teramae, and Tomoki Fukai Laboratory for Neural Circuit Theory, RIKEN BSI E-mail: tsubo@brain.riken.jp 大脳皮質神経細胞の同期発火現象は, 脳の高次機能において重要な役割を果たすと考えられている. 同期発火現象は神経系の回路構造とともに, 位相応答などの神経細胞固有の性質によって影響を受ける. 現在までの研究から, 興奮性神経細胞である錐体細胞の位相応答は, あるクラスの関数で記述されること, またそのクラスの中で定性的に異なる2つのタイプに分類されることが示されてきた. 我々の最近の研究から, 錐体細胞の位相応答はその細胞が属する層 ( 場所 ) に依存してそのタイプが異なることがわかった. さらに, 同じ層に属する錐体細胞であっても, その位相応答の形は同じタイプでも均質ではなく不均質な性質をもつことがわかった. このように, 神経細胞の位相応答は不均質であると考えられるが, 不均質な位相応答をもつ振動子集団がどのような挙動を示すのかは, 明確にはわかっていない. そこで, 我々は不均質な位相応答をもつ振動子集団の挙動を, 大域的にパルス結合された位相振動子モデルを用いて, 解析的, 数値的に調べた. その結果, 均質な場合に同期傾向が弱い位相応答をもつ振動子は, 不均質にしても定性的に変化がなかった. 一方で, 均質な場合に同期傾向が強い位相応答をもつ振動子は, 不均質性を強めると同期, 部分同期, 非同期と転移することがわかった.

1 Physarum polycephalum 6 4 9 3 6 6

2 Fig. 1: 12 18 24 3 6 66

y ÎÆÉÂÓÕ Ö ÊÑÏÕ ÐÊÖ ÑÕÉÆÍÇ ~Ê ÎÆÍÉÑÏÕ ÐÇÈÍÆÇÉÇÔÏÓ ÍÊÍÉÉ ŒÊÈÍÉÆÍ[1]ÂÇÊÍÆÊÊÊ~ÊÎÆÍ ÇÉÉÇÈÍÇÉÇÆÍÂÇÊÍÆÊyÊÇÉ ÆÍÉÇÊwuÊÍÊÍÉÉÊÈÍÉÆÍÇ[2]ÂÿjÊuÊ ÉÆÍ ÇÍÌÉÊÂFitzHugh-Nagumo ÕÒÖÊ ÎÔÎÑ ~ÉsÇÈÍ ÎÆÍÇÉÉÂÇÊÍÆÊyÇzÇÍÇÉÇvŒÊÍÉ ÉvÈÍÉÆÍÂÇÊyÊÊÍÉÉÇzÇÈÍÍÊ ÎÊÉÆÂÈÊÔÒÓ ÐÊÖÎÔÓÔÎvÈÍÇ ÉÊÍÉɈdÊuÉÇÍ[3] {ÊÈÉÇÊÍÆÊÎÆÍÇÉÉÂÊÊ yçzçíçéîœêèâìéâêííîìâ wuéê ÎsÆ :~ÊÖ ÑÕ ÓÏÑÎÆÍÇÉÊÍÍ{ÊÂŒ ÊÊÊÇÈÍÉÆÍÇÂÈÊÍÇÉÉÉÇÈÍÉÉÇ ÍÂÊÊÈÍÈÍ ÊŒÉÍÍÉ ÇÊÉsÈÉÆÍ [1] Z. F. Mainen and T. J. Sejnowski, Science 268, 153 1995. [2]J. Teramae, and D. Tanaka, Phys. Rev. Lett. 93, 2413 (24) [3]K. Nagai, H. Nakao, and Y. Tsubo, Phys. Rev. E, 71, 36217 (25)

Brain Machine Interface (BMI) BMI () [1] (a) [, 2π] 3 5 15 (b) #1-551-111-15 Fig. 1. (a) x = y < x 2 15 (b)(a) REFERENCES [1] L. Shpigelman, Y. Singer, R. Paz, and E. Vaadia, Spikernels: Predicting arm movements by embedding population spike rate patterns in inner-product spaces, Neural Comput., vol. 17, pp. 671 69, 25.

1) 2) 3) Time Dependent Ginzburg-Landau (TDGL) t ψ(r, t) = ψ + γψ ψ 2 ψ + 2 ψ + he iωt, (ψ = X + iy ) (1) 1 γ =.3, Ω =.5, h =.5415 1 (a) 1 (c) 1 (b) (d) ψ (t) = L ψ(z, t)dz/l (1 (b)) (1 (d)) γ γ 2 (a) θ = (2 (b)) X(z,t) X(z,t) -.54 (a) -.542 -.544 -.546 -.548 -.55 2 4 6 8 z (c) 1.5 -.5 4 8 12 16 z Y Y (b) 1-1 -1 1 X 1 (d) -1-1 1 X y (a) x 1.2.8.4 -.4 -.8 Y (b).8.4 -.4 -.8-1.2 -.8 -.4.4.8 1.2 2: γ =.5, Ω = 1., h =.5 (a) X(x, y) (b) X 1: (a) (b) (c) (d) 1) B. K. Chakrabarti, and M. Acharyya, Rev. Mod. Phys. 71, 847 (1999). 2) E. Machado et al., Phys. Rev. E 71, 1612 (25). 3) G. S. Jeon et al., Phys. Rev. B 65, 18451 (22).

1 2 1 1 1 1 2 () 1: (a) (c) (d) (f) (a) (d)(b) (e)(c) (f) (a)(d): (b)(e): (c)(f):

[ ] [ ] [ ] [ ] Wistar 1 2 3 24 21 7 [ ] 1 ZT(zeitgeiber time)82 ZT233 ZT21 ZT12 [ ] [ ]

FitzHugh- (FHN) [1, 2] du/dt = u(u α)(1 u) v, (1) dv/dt = τ(u γv). (2) α, γ, τ u = u(t) () v = v(t) [3] du i /dt = u i (u i α)(1 u i ) v i + K N dv i /dt = τ(u i γv i ), κ i,j (u j u i ), i j K N {κ i,j } κ i,j = { 1, with probability 1 p 1, with probability p, p α =.1, τ =.1, γ = 1. p = (u i, v i ) = (, ) [4] p K p 1(a)

u u u i i i 1 1 1 t t t K p ( 1(c)) κ i,j N Hopf K c κ i,j K c (2p 1) = α + γτ. (3) [5] ( 1(b)) (a) (b) (c). 1. 5 5. 5 5. 5 5 1 1: (a) u i {κ i,j } (b)(p, K)- N 1 (Hopf ) (c) K [1] R. FitzHugh. Impulses and physiological states in theoretical models of nerve membrane. Biophysical Journal, 1:445 466, 1961. [2] J. Nagumo, S. Arimoto, and S. Yoshizawa. An active pulse transmission line simulating nerve axon. Proc. IRE, 5:261 27, 1962. [3] T. Aoyagi. Network of neural oscillators for retrieving phase information. Phys. Rev. Lett., 74:475 478, 1995. [4] T. Yanagita, T. Ichinomiya, and Y. Oyama. Pair of excitable fitzhugh-nagumo elements: Synchronization, multistability, and chaos. Phys. Rev. E, 72(5):56218, Nov 25. [5] Y.Oyama, T.Yanagita, and T. Ichinomiya. Numerical analysis of fitzhugh-nagumo neurons on random networks. Prog. of Theor. Phys. Suppl., 161:389 392, 26.

1 1 ( ) 1: Gaussian White Noise 1-3L & 1-3R 12 8 4 4 8 12 events/s N=9 1-2 1-3 directional tuning curve 1ms time window 1-2L & 1-3L 1-2R & 1-3R events/s 1-2L & 1-2R 2: directional tuning curvel 27 27 9 6 4 2 2 4 6 events/s 18 N=9 18 9 27 9 12 8 4 4 8 12 18 27 9 6 4 2 2 4 6 events/s N=9 R 18 N=9