d (i) (ii) 1 Georges[2] Maier [3] [1] ω = 0 1

Similar documents
chap7_v7.dvi

,, Andrej Gendiar (Density Matrix Renormalization Group, DMRG) 1 10 S.R. White [1, 2] 2 DMRG ( ) [3, 2] DMRG Baxter [4, 5] 2 Ising 2 1 Ising 1 1 Ising

1: Sheldon L. Glashow (Ouroboros) [1] 1 v(r) u(r, r ) ( e 2 / r r ) H 2 [2] H = ( dr ψ σ + (r) 1 2 ) σ 2m r 2 + v(r) µ ψ σ (r) + 1 dr dr ψ σ + (r)ψ +

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K

a L = Ψ éiγ c pa qaa mc ù êë ( - )- úû Ψ 1 Ψ 4 γ a a 0, 1,, 3 {γ a, γ b } η ab æi O ö æo ö β, σ = ço I α = è - ø çèσ O ø γ 0 x iβ γ i x iβα i

1 2 LDA Local Density Approximation 2 LDA 1 LDA LDA N N N H = N [ 2 j + V ion (r j ) ] + 1 e 2 2 r j r k j j k (3) V ion V ion (r) = I Z I e 2 r

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

1 1.1 hν A(k,ε)[ k ρ(ω)] [1] A(k,ε) ε k μ f(ε) 1/[1 + exp( ε μ k B T )] A(k,ε)f(ε) ρ(ε)f(ε) A(k,ε)(1 f(ε)) ρ(ε)(1 f(ε)) A(k,ε) σ(ω) χ(q,ω) k B T ev k


* 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) *

日本内科学会雑誌第102巻第4号

1 d 6 L S p p p p-d d 10Dq 1 ev p-d d 70 % 1: NiO [3] a b CI c [5] NiO Ni [ 1(a)] Ni 2+ d 8 d 7 d 8 + hν d 7 + e d 7 1(b) d 7 p Ni 2+ t 3 2g t3 2g e2

反D中間子と核子のエキゾチックな 束縛状態と散乱状態の解析

GJG160842_O.QXD

本文/目次(裏白)

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

Ł\”ƒ-2005

第90回日本感染症学会学術講演会抄録(I)

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

linearal1.dvi

TOP URL 1

(a) (b) (c) (d) 1: (a) (b) (c) (d) (a) (b) (c) 2: (a) (b) (c) 1(b) [1 10] 1 degree k n(k) walk path 4

(extended state) L (2 L 1, O(1), d O(V), V = L d V V e 2 /h 1980 Klitzing

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1)

1).1-5) - 9 -

: , 2.0, 3.0, 2.0, (%) ( 2.

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

TOP URL 1

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

2 FIG. 1: : n FIG. 2: : n (Ch h ) N T B Ch h n(z) = (sin ϵ cos ω(z), sin ϵ sin ω(z), cos ϵ), (1) 1968 Meyer [5] 50 N T B Ch h [4] N T B 10 nm Ch h 1 µ

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

i


Wide Scanner TWAIN Source ユーザーズガイド

TOP URL 1

SO(2)

1. ( ) L L L Navier-Stokes η L/η η r L( ) r [1] r u r ( ) r Sq u (r) u q r r ζ(q) (1) ζ(q) u r (1) ( ) Kolmogorov, Obukov [2, 1] ɛ r r u r r 1 3

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat

( 2001MB062) Zachary Fisk Thomas Maurice Rice Hans Rudolf Ott MgB Y 2 C 3 18K 11K Ca EuB 6 CaB 6 CaB 2 C 2 MgB 2 Y 2 C 3 1 NED

d > 2 α B(y) y (5.1) s 2 = c z = x d 1+α dx ln u 1 ] 2u ψ(u) c z y 1 d 2 + α c z y t y y t- s 2 2 s 2 > d > 2 T c y T c y = T t c = T c /T 1 (3.

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

K 2 X = 4 MWG(f), X P 2 F, υ 0 : X P 2 2,, {f λ : X λ P 1 } λ Λ NS(X λ ), (υ 0 ) λ : X λ P 2 ( 1) X 6, f λ K X + F, f ( 1), n, n 1 (cf [10]) X, f : X

(Onsager )

eto-vol1.dvi

all.dvi


プログラム

LCR e ix LC AM m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x (k > 0) k x = x(t)

proc.dvi

.. ( )T p T = p p = T () T x T N P (X < x T ) N = ( T ) N (2) ) N ( P (X x T ) N = T (3) T N P T N P 0

chap9.dvi

y = x x R = 0. 9, R = σ $ = y x w = x y x x w = x y α ε = + β + x x x y α ε = + β + γ x + x x x x' = / x y' = y/ x y' =

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i


tnbp59-21_Web:P2/ky132379509610002944

DVIOUT-fujin

gr09.dvi

薄膜結晶成長の基礎3.dvi


A

1 2 2 (Dielecrics) Maxwell ( ) D H

nsg04-28/ky208684356100043077

日本内科学会雑誌第98巻第4号

日本内科学会雑誌第97巻第7号

koji07-01.dvi

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

³ÎΨÏÀ

( ) ) AGD 2) 7) 1

抄録/抄録1    (1)V

untitled

1 1.1,,,.. (, ),..,. (Fig. 1.1). Macro theory (e.g. Continuum mechanics) Consideration under the simple concept (e.g. ionic radius, bond valence) Stru

読めば必ずわかる 分散分析の基礎 第2版

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論

薄膜結晶成長の基礎4.dvi

2/24

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

QMII_10.dvi

all.dvi

2000年度『数学展望 I』講義録

研修コーナー

パーキンソン病治療ガイドライン2002

遍歴電子磁性とスピン揺らぎ理論 - 京都大学大学院理学研究科 集中講義

0406_total.pdf

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

COE-RES Discussion Paper Series Center of Excellence Project The Normative Evaluation and Social Choice of Contemporary Economic Systems Graduate Scho

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

T g T 0 T 0 fragile * ) 1 9) η T g T g /T *1. τ τ η = Gτ. G τ

* n x 11,, x 1n N(µ 1, σ 2 ) x 21,, x 2n N(µ 2, σ 2 ) H 0 µ 1 = µ 2 (= µ ) H 1 µ 1 µ 2 H 0, H 1 *2 σ 2 σ 2 0, σ 2 1 *1 *2 H 0 H

( ) s n (n = 0, 1,...) n n = δ nn n n = I n=0 ψ = n C n n (1) C n = n ψ α = e 1 2 α 2 n=0 α, β α n n! n (2) β α = e 1 2 α 2 1

スケーリング理論とはなにか? - --尺度を変えて見えること--

t χ 2 F Q t χ 2 F 1 2 µ, σ 2 N(µ, σ 2 ) f(x µ, σ 2 ) = 1 ( exp (x ) µ)2 2πσ 2 2σ 2 0, N(0, 1) (100 α) z(α) t χ 2 *1 2.1 t (i)x N(µ, σ 2 ) x µ σ N(0, 1

Transcription:

16 5 19 10 d (i) (ii) 1 Georges[2] Maier [3] 2 10 1 [1] ω = 0 1

[4, 5] Dynamical Mean-Field Theory (DMFT) [2] DMFT I CPA [10] CPA CPA Σ(z) z CPA Σ(z) Σ(z) Σ(z) z - CPA Σ(z) DMFT Σ(z) CPA [6] 3 1960 [7] 3.1 1990 [8] DMFT H = t ij c iσ c jσ + U c i c i c i c i ijσ i ɛ k t ij 1960 [9] t ij III t 1 2

k z z λ(z) Σ(z) (2) G(k, z) = [z ɛ k Σ(z)] 1 λ(z) Σ(z) Σ(z) k DMFT λ(z) DMFT Σ(z) DMFT CPA [11, 2] DMFT Ḡ(z) G(k, z) DMFT N III Ḡ(z) = 1 CPA 1 N z ɛ k k Σ(z) 1980 DMFT ρ(ɛ) = dɛ [4] z Σ(z) ɛ [5] = g(z Σ(z)) (1) NCA [12] extended NCA g(z) U = 0 (XNCA) ρ(ɛ) g(z Σ(z)) XNCA λ(z) z Σ(z) Ḡ(z) 1990 (QMC) U Georges-Kotliar G(z) [13] λ(z) G(z) = [z λ(z)] 1 λ(z) λ(z) = ɛ f + 1 V k 2 (3) N z ɛ c (k) k U Σ(z) ɛ f V k Ḡ(z) (1) ɛ c (k) 1 g(z Σ(z)) = [z λ(z) Σ(z)] 1 k (2) G(k, z) Ḡ(z) CPA Σ(z) [5] [1, 14] 3

(2) Φ F Potthoff Σ t Caffarel-Krauth Σ(z) [17] Σ t [15] Σ t Φ G t Φ [16] G Caffarel-Krauth F Σ t Potthoff Ω [17] Potthoff DMFT Ω t F Ω Ω t + T Tr ln(g 1 Σ t )G t Ω{Σ(t )} (5) t g G t Ω T = β 1 [18] βω{g} = βφ{g} Tr(ΣG) + Tr ln G (4) Ω{Σ(t )}/ t = 0 (6) G Potthoff Self- Φ{G} Energy Functional Theroy (SFT) δφ/δg = Caffarel-Krauth Σ G 1 = g 1 Σ (6) δω{g}/δg = 0 Potthoff DMFT [19] Φ{G} 3.2 DMFT LDA [18] G Σ F {Σ} = Φ T Tr(ΣG) LMTO δf/δσ = G δω{σ}/δσ = 0 4

) H LDA (k) LDA ) Sr 1 x Ca x VO 3 (1) LDA+DMFT Ḡ(z) = 1 [zi H LDA (k) Σ(z)I d ] 1 [21] N k (7) I I d f Ce α-γ d 4f LDA+DMFT LDA+DMFT α- d f γ [22, 23] QMC α-ce La 1 x Sr x TiO f 3 Ti 3d γ-ce 2 2 LDA+DMFT LDA t 2g α-γ 1 d γ-ce 2 1 LDA+DMFT [20] α-ce 1 QMC LDA+DMFT U QMC f 1: La 1 x Sr x TiO 3 LDA, LDA+DMFT [20] GW U [24] 5

DMFT [12] [25] 4 4.1 2: α-ce γ-ce PES BIS LDA+DMFT [23] CPA [10, 26] 3.3 DMFT DMFT DMFT [2] 1 U U N N/N c N c r 1 R U r = R+ r DMFT r R k K k 3 2 N c = 4 = L 2 DMFT DMFT DMFT 6

R r ~ K L 1stBZ 2π/L k ~ 3: exp[ ik ( r i r j )] (10) 1stBZ k = k + K K CPT 4.2 (CPT) (8) Σ c (z) t ij CPT t( r i r j ) = δ ri, r j t c + t ( r i r j ) t c, t Σ(z) z R N c G(k, z) N c G( r i r j, z) DCA CDMFT SFT G( r i r j, z) 1 = δ ri, r j Ḡ(z) 1 t ( r i r j ) Ḡ(z) 1 N c 4.3 (DCA) Ḡ(z) = [z t c Σ c (z)] 1 (8) G( r i r j, z) r i r j G( k, z) 1 = Ḡ 1 (z) t ( k) (9) G(k, z) k CPT G(k, z) = 1 N c CPT [27, 28] Ḡ(K, z) = [z ε K Σ(K, z)] 1 (12) R t ε K k G ij ( k, z) t (K + k) = ɛ K+ k ε K (13) N c i,j=1 G ij ( k, z) t c ε K = (N c /N) k ε K+ k (11) 7

G(K + k, NCA QMC z) [Ḡ 1 k)] DCA N 1 (14) c = 1 DMFT = (K, z) t (K + DMFT DCA DCA [29] N c G(K + k, z) Ḡ(K, z) = (N c /N) k G(K + k, z) (15) 4.4 (CDMFT) CDMFT CPA Molecular CPA Ḡ(K, z) 1 = G(K, z) 1 Σ(K, z) (16) (MCPA) [26] DMFT (1) G(K, z) N c N c (1) k k (i) G(K, z) 0 CDMFT CPT (ii) G c (K, z) (8) Ḡ(K, z) (iii) Σ(K, z) = G(K, z) 1 G c (K, z) 1 Ḡ(z) = (N c /N) k G( k, z) (17) (iv) Σ(K, z) G(K + k, z) Ḡ(K, z) = (N c /N) k G(K + k, z) [30] (v) G(K, z) 1 = Ḡ(K, (15) DCA z) 1 +Σ(K, z) G( k, z) (10) (vi) G(K, z) 1 CDMFT (ii) Ḡ(K, z) 4 CDMFT G c (K, z) (ii) (v) 4.5 (SFT) (ii) N c K Potthoff 8

U/t 4: SFT CDMFT SFT N c 5: n = 1 U/t = N b 4 2 [17] DMFT DCA+QMC) DMFT(N c = 1) N c = 1, N b = SFT N b N c Caffarel-Krauth (ω = 0) CDMFT N c > 1, N b = [31] SFT t 4 SFT U U/t [32, 33, 34] 6 CDMFT SFT 1 µ 5 [16] 5.1 1 µ 1 n = 1 2 N c = 2, N b = 8 DFMT U/t n(µ) DMFT 2 5 5.2 [31] DCA QMC NMR DCA+QMC [35] 9

7: δ 6: U/t = 4 1 U/t = 8 2 n µ DCA+QMC N c = 2, N b = 8 [16] BA N PCDMFT c = 4)[37] CDMFT (i) (ii) (iii) [36] DCA+QMC 7 [37] 5.3 δ = 0.050 1 δ = 0.200 2 2 Jarrel (i),(ii) DMFT (RVB) DCA+QMC N c T N N c = 40 N c = 1 7 [39] J 4t 2 /U J [3, 38] CPT 1 [34] T = 0 10

CPT Potthoff h 1 h = 0 2 h 0 [40] 1 h = 0 0 5.4 0 s p d DMFT [41] s d 4 f 2 0 RKKY 2 1 8 2 N c = 4 DCA+QMC [3] 2 d DCA+NCA 6 8: 2 [3] U/t = 8 [25] DMFT N c = 4 DCA 1 DMFT f 1 RKKY 11

RKKY RKKY 1 0.4 7 9 DMFT ɛ f ɛ f = 2, U = 4, V = 1 V 1 K = (0, 0) Γ ρ f (Kω) ρ f (Kω) 0.4 0.3 0.2 0.1 (a) K=(0,0) K=(π,0), (0,π) K=(π,π) 0-6 -4-2 0 2 4 6 ω (b) 0.4 0.3 0.2 0.1 0-6 -4-2 0 2 4 6 ω 2 [1] : 29 (1994) 9: DCA+NCA 777. [25] T = 0.2 T = 0.02 [2] A. Georges, G. Kotliar, W. Krauth, and M. Rozenberg: Rev. Mod. Phys. 68 (1996) 13. [3] T. Maier et al: cond-mat/0404055. DMFT K = (π, π) [4] Y. Kuramoto: Theory of Heavy Fermions and Valence Fluctuations, 12

eds. T. Kasuya and T. Saso (Springer Verlag, 1985) p.152. [5] Y. Kuramoto and T. Watanabe: Physica 148B (1987) 80. [6] L. Onsager: J. Am. Chem. Soc. 58 (1936) 1486. [7] R. Brout: Phys. Rev. 122 (1960) 469. [8] Y. Kuramoto and N. Fukushima: J. Phys. Soc. Jpn. 67 (1998) 583. [9] J. Hubbard: Proc. Royal. Soc. London 276 (1963) 238. [10] R.J. Elliott, J.A. Krumhansl and P.A. Leath: Rev. Mod. Phys. 46 (1974) 465. [11] E. Müller-Hartmann: Z. Phys. B74 (1989) 507. [12] C.-I. Kim, Y. Kuramoto and T. Kasuya: J. Phys. Soc. Jpn. 59 (1990) 2414. [13] A. Georges and G. Kotliar: Phys. Rev. B 45 (1992) 6479. [14] O. Sakai and Y. Kuramoto: Solid State Commun. 89 (1994) 307. [15] M. Caffarel and W. Krauth: Phys. Rev. Lett. 72 (1994) 1545. [16] M. Capone et al.: cond-mat/0401060. [17] M. Potthoff, M. Aichhorn and C. Dahnken: Phys. Rev. Lett. 91 (2003) 206402. [18] G. Baym: Phys. Rev. 127 (1962) 835. [19] M. Potthoff: Eur. Phys. J. B36 (2003) 335. [20] I. A. Nekrasov et al: Euro. Phys. J. B. 18 (2000) 55. [21] S.-K. Mo et al.: Phys. Rev. Lett. 90 (2003) 186403. [22] M. B. Zölfl et al.: Phys. Rev. Lett. 87 (2001) 276403. [23] A. K. McMahan, K. Held and R. T. Scalettar: Phys. Rev. B 67 (2003) 75108. [24] S. Biermann, F. Aryasetiawan and A. Georges: cond-mat/0401653. [25] Y. Shimizu: J. Phys. Soc. Jpn. 71 (2002) 1166. [26] M. Tsukada: J. Phys. Soc. Jpn. 26 (1969) 684. [27] C. Gros and R. Valenti: Annalen der Phys. 3 (1994) 460. [28] D. Sénéchal, D. Perez and M. Pioro- Ladriére: Phys. Rev. Lett. 84 (2000) 522. [29] M.H. Hettler et al.: Phys. Rev. B58 (1998) R7475. [30] G. Kotliar et al.: Phys. Rev. Lett. 87 (2001) 186401. [31] S. Moukouri and M. Jarrell: Phys. Rev. Lett. 87 (2001) 167010. [32] Y. Imai and N. Kawakami: Phys. Rev. B65 (2002) 233103. [33] O. Parcollet, G. Biroli and G. Kotliar: cond-mat/0308577. [34] D. Sénéchal and A.-M. Tremblay: condmat/0308625. [35] H. Yasuoka, T. Imai, T. Shimizu: Strong Correlation and Superconductivity, (Springer Verlag, Berlin, 1989) p. 254. 13

[36] Y. Yanase et al.: Phys. Rep. 387 (2003) 1. [37] M. Jarrell et al.: Europhys. Lett. 56 (2001) 563. [38] T.D. Stanescu and P. Phillips: Phys. Rev. Lett. 91 (2003) 017002. [39] M. Jarrell et al.: Phys. Rev. B64 (2001) 195130. [40] C. Dahnken et al.: cond-mat/0309407. [41] Y. Kuramoto and Y. Kitaoka: Dynamics of Heavy Electrons, (Oxford 2000). 14

1: NCA (QMC) 2: CPT CDMFT DCA SFT DCA CDMFT 15