橡超弦理論はブラックホールの謎を解けるか?

Similar documents
D-brane K 1, 2 ( ) 1 K D-brane K K D-brane Witten [1] D-brane K K K K D-brane D-brane K RR BPS D-brane

YITP50.dvi

ssastro2016_shiromizu

Bose-Einstein Hawking Hawking Hawking Hawking nk Hawking Bose-Einstein Hawking 1 Bekenstein[1] Hawking 1974 [2,

“‡”�„³…u…›…b…N…z†[…‰

untitled

The World's No.1 Science & Technology News Service Hawking cracks black hole paradox 19:00 14 July 04 Exclusive from New Scientist Print Edition. Subs

一般相対性理論に関するリーマン計量の変形について

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1

1: Sheldon L. Glashow (Ouroboros) [1] 1 v(r) u(r, r ) ( e 2 / r r ) H 2 [2] H = ( dr ψ σ + (r) 1 2 ) σ 2m r 2 + v(r) µ ψ σ (r) + 1 dr dr ψ σ + (r)ψ +

3 3.1 R r r + R R r Rr [ ] ˆn(r) = ˆn(r + R) (3.1) R R = r ˆn(r) = ˆn(0) r 0 R = r C nn (r, r ) = C nn (r + R, r + R) = C nn (r r, 0) (3.2) ( 2.2 ) C

Λ(1405) supported by Global Center of Excellence Program Nanoscience and Quantum Physics 2009, Aug. 5th 1

1 2 LDA Local Density Approximation 2 LDA 1 LDA LDA N N N H = N [ 2 j + V ion (r j ) ] + 1 e 2 2 r j r k j j k (3) V ion V ion (r) = I Z I e 2 r

Einstein ( ) YITP

( ) ( ) 1729 (, 2016:17) = = (1) 1 1

D.dvi

1/2 ( ) 1 * 1 2/3 *2 up charm top -1/3 down strange bottom 6 (ν e, ν µ, ν τ ) -1 (e) (µ) (τ) 6 ( 2 ) 6 6 I II III u d ν e e c s ν µ µ t b ν τ τ (2a) (

[3] 2 2

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

E 1/2 3/ () +3/2 +3/ () +1/2 +1/ / E [1] B (3.2) F E 4.1 y x E = (E x,, ) j y 4.1 E int = (, E y, ) j y = (Hall ef

Gmech08.dvi

8 (2006 ) X ( ) 1. X X X 2. ( ) ( ) ( 1) X (a) (b) 1: (a) (b)

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

C O N T E N T S 1

Hilbert, von Neuman [1, p.86] kt 2 1 [1, 2] 2 2

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1)

5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2


cp57_h1_0312_n

* 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) *

(Maldacena) ads/cft

Gmech08.dvi

a L = Ψ éiγ c pa qaa mc ù êë ( - )- úû Ψ 1 Ψ 4 γ a a 0, 1,, 3 {γ a, γ b } η ab æi O ö æo ö β, σ = ço I α = è - ø çèσ O ø γ 0 x iβ γ i x iβα i

液晶の物理1:連続体理論(弾性,粘性)

1

1 2 2 (Dielecrics) Maxwell ( ) D H

LLG-R8.Nisus.pdf

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

BH BH BH BH Typeset by FoilTEX 2

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT


広報1505月号.indd

untitled

kougiroku7_26.dvi

A

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K

中央大学セミナー.ppt

Feynman Encounter with Mathematics 52, [1] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull

QMI13a.dvi

ADM-Hamiltonian Cheeger-Gromov 3. Penrose

II

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

総研大恒星進化概要.dvi

Note5.dvi

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

Yang-Mills Yang-Mills Yang-Mills 50 operator formalism operator formalism 1 I The Dawning of Gauge T

I ( ) 2019

SUSY DWs

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T


b.dvi

反D中間子と核子のエキゾチックな 束縛状態と散乱状態の解析

( ) ) AGD 2) 7) 1

Twist knot orbifold Chern-Simons

2 2 1?? 2 1 1, 2 1, 2 1, 2, 3,... 1, 2 1, 3? , 2 2, 3? k, l m, n k, l m, n kn > ml...? 2 m, n n m

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat

Introduction SFT Tachyon condensation in SFT SFT ( ) at 1 / 38

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v


T g T 0 T 0 fragile * ) 1 9) η T g T g /T *1. τ τ η = Gτ. G τ

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)


5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

2.1: n = N/V ( ) k F = ( 3π 2 N ) 1/3 = ( 3π 2 n ) 1/3 V (2.5) [ ] a = h2 2m k2 F h2 2ma (1 27 ) (1 8 ) erg, (2.6) /k B 1 11 / K

,, Andrej Gendiar (Density Matrix Renormalization Group, DMRG) 1 10 S.R. White [1, 2] 2 DMRG ( ) [3, 2] DMRG Baxter [4, 5] 2 Ising 2 1 Ising 1 1 Ising

42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 =

Aharonov-Bohm(AB) S 0 1/ 2 1/ 2 S t = 1/ 2 1/2 1/2 1/, (12.1) 2 1/2 1/2 *1 AB ( ) 0 e iθ AB S AB = e iθ, AB 0 θ 2π ϕ = e ϕ (ϕ ) ϕ

[ ] = L [δ (D ) (x )] = L D [g ] = L D [E ] = L Table : ħh = m = D D, V (x ) = g δ (D ) (x ) E g D E (Table )D = Schrödinger (.3)D = (regularization)

1: 3.3 1/8000 1/ m m/s v = 2kT/m = 2RT/M k R 8.31 J/(K mole) M 18 g 1 5 a v t πa 2 vt kg (

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

δ ij δ ij ˆx ˆx ŷ ŷ ẑ ẑ 0, ˆx ŷ ŷ ˆx ẑ, ŷ ẑ ẑ ŷ ẑ, ẑ ˆx ˆx ẑ ŷ, a b a x ˆx + a y ŷ + a z ẑ b x ˆx + b

1 (Contents) (4) Why Has the Superstring Theory Collapsed? Noboru NAKANISHI 2 2. A Periodic Potential Problem

Undulator.dvi

d (i) (ii) 1 Georges[2] Maier [3] [1] ω = 0 1

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1


Ginzburg-Landau A A Kyoto Univ. Kobe Design Univ. A N. Tsukamoto, H. Fujisaka, K. Ouchi A Ginzburg-Landau ψ = ψ + (1 + ic 1 ) 2 ψ (1 + ic 2 ) ψ 2 ψ (1

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,,

Chadwick [ 1 ] 1919,, electron number Q kinetic energy [MeV] 8.1: 8.1, 1 internal conversion electron E γ E e =

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

15_15KEK

Black-Scholes [1] Nelson [2] Schrödinger 1 Black Scholes [1] Black-Scholes Nelson [2][3][4] Schrödinger Nelson Parisi Wu [5] Nelson Parisi-W

77

OTO研究会スライド

L. S. Abstract. Date: last revised on 9 Feb translated to Japanese by Kazumoto Iguchi. Original papers: Received May 13, L. Onsager and S.

Transcription:

1999 3 (Can String Theory Solve the Puzzles of Black Holes?) 305-0801 1-1 makoto.natsuume@kek.jp D-brane 1 Schwarzschild 60 80 2 [1] 1 1 1

2 2 [2] 25 2.2 2 2.1 [7,8] Schwarzschild 2GM/c 2 Schwarzschild G M c 2 2

T κ de = TdS dm = κ 8πG da ds 0 da 0 T = 0 κ = 0 1: Schwarzschild A E M κ T κ S A 3

Bekenstein 74 Hawking Hawking κ κ Hawking T = hκ/2π 3 S BH = A 4G h Bekenstein - Hawking (1) S BH Hawking S BH S BH h h 0 S BH ultraviolet catastrophe Rayleigh - Jeans S BH 2.2 [9] Hawking Hawking pure state Hawking mixed state Einstein - Podolsky - Rosen 3 c = k B = 1 h = 1 (1) 4

Hawking 4 Hawking 3 Schwarzschild 4 A 5

[8] fundamental string g s G G gs 2l2 s l s g s Schwarzschild 2GM g s g s Schwarzschild Schwarzschild M? (2) M d string [10] d string e lsm (3) d BH d BH e A G e GM 2 (4) (1) 2GM M 6

2: Schwarzschild 7

g s 1 g s (3) Schwarzschild Schwarzschild l s l s well-defined GM l s S string l s M GM M GM 2 (5) G (3) (4) 10 58 (1) 10 77 10 80 [11] 93 Susskind 8

[12] Susskind Horowitz Polchinski [13] 4 Susskind 5 (5) 4.1 BPS Q Q M Q = M BPS BPS Q = M BPS BPS BPS Schwarzschild 9

Reissner-Nordström Q M Q < M Hawking Q = M Q = M Hawking extremal black hole BPS BPS BPS (2)? Q BPS (6) BPS BPS (6) Susskind 95 Sen [14] Sen 5 BPS BPS D-brane 4.2 D-brane D-brane [2, 15] D-brane p p = 0 p = 1 p = 2 membrane.. Dp-brane D-brane 10

D-brane BPS D-brane BPS 3: D-brane D-brane D-brane [2, 15] D-brane D-brane D-brane 1/(g s l s ) D-brane Q Q/(g s l s ) D-brane Schwarzschild 2GM O(g s Q) g s D-brane D-brane BPS? Q D-brane BPS (7) Strominger Vafa Reissner-Nordström BPS (1) 5 11

Strominger Vafa [16, 17] Reissner-Nordström 10 g s 1 φ g s = e φ Reissner-Nordström D-brane 4 Sen D-brane Reissner-Nordström BPS g s 1 BPS D-brane Q D-brane g s Q D-brane Schwarzschild O(g s Q) 4 D-brane D-brane Q g s g s Q 1 12

4: Callan Maldacena D-brane 5 8 R IIB D1 D1 D5 D5 D-brane 5 Q 1 D1 Q 5 D5 D1 D5 D1 10 x 5, x 6, x 7, x 8, x 9 5 dominant [18] 13

T 5 = T 4 S 1 D1 x 9 R n/r D-brane Q 1, Q 5, n ds 2 = λ 2/3 dt 2 + λ 1/3 (dr 2 + r 2 dω 2 3 ) (8) dω 2 3 λ = (1 + c 1Q 1 )(1 + c 5Q 5 )(1 + c nn r 2 r 2 ) (9) r2 c 1, c 5, c n G 5 c 1 c 5 c n = (4G 5 /π) 2 c 1 Q 1 = c 5 Q 5 = c n n = ρ 2 0 (8) Reissner-Nordström ds 2 = (1 ρ2 0 ρ 2)2 dt 2 + dρ2 (1 ρ2 0) + ρ 2 ρ2 dω 2 3 (10) 2 ρ 2 = r 2 +ρ 2 0 r = 0 6 S 3 2π 2 ( ) 3 (1) S BH = A = 2π Q 1 Q 5 n (11) 4G 5 D-brane D1 x 9 R D1 D5 4Q 1 Q 5 D-brane Q 1 = Q 5 = 1 D1 D5 D5 D1 D1 x 5, x 6, x 7, x 8 6 r = 0 r = 0 dω 2 3 r = 0 λ 1 + Q/r 2 14

d (3) 2πR n/r n d exp(2π cn 6 ) (12) c 1/2 c = 6Q 1 Q 5 S = 2π Q 1 Q 5 n (13) (11) 6 5 Hawking [16] D-brane Hawking D-brane D-brane BPS 6.1 15

1. 2. 3. Bekenstein - Hawking [2] Feynman 6.2 3 (1) Hawking [19] 16

[20] [21] Strominger D-brane Hawking D-brane D-brane Hawking D-brane BPS g s D-brane D-brane D-brane D-brane Hawking 17

[1] A. Strominger and C. Vafa: Phys. Lett. B379 (1996) 99, hepth/9601029 [A]. 7 [2] 53, 312, May 1998 [B]. [3] J. Polchinski: Rev. Mod. Phys. 68 (1996) 1245, hep-th/9607050 [B]. [4] Search and Discovery, Physics Today, Vol. 50, No. 3, 19, March 1997 [B]. [5] G. T. Horowitz: gr-qc/9604051; gr-qc/9704072 [C]; J. M. Maldacena: hep-th/9607235[c]; Nucl. Phys. Proc. Suppl. 61A (1998) 111, hep-th/9705078 [C]; A. W. Peet: hep-th/9712253 [C]; A. Sen: hep-th/9802051 [C];, No. 416, 51, Feb. 1998 [C]. [6] 52, 161, March 1997 [B]. [7], No. 422, 36, Aug. 1998 [B]. [8] R. M. Wald: gr-qc/9702022 [C]. [9] L. Susskind: Scientific American, Vol. 276, No. 4, 52, April 1997 [B]; J. Preskill: hep-th/9209058 [C]; D. N. Page: hep-th/9305040 [C]. [10] M. B. Green, J. H. Schwarz, and E. Witten: Superstring theory (Cambridge Univ. Press, 1987); J. Polchinski: String theory (Cambridge Univ. Press, 1998). 7 18

[11] G. t Hooft: Nucl. Phys. B335 (1990) 138 [A]. [12] L. Susskind: hep-th/9309145 [A]. [13] G. T. Horowitz and J. Polchinski: Phys. Rev. D57 (1998) 2557, hepth/9707170 [A]; Phys. Rev. D55 (1997) 6189, hep-th/9612146 [A]. [14] A. Sen: Mod. Phys. Lett. A10 (1995) 2081, hep-th/9504147 [A]. [15] J. Polchinski: Phys. Rev. Lett. 75 (1995) 4724, hep-th/9510017 [A]; J. Polchinski, S. Chaudhuri, and C. V. Johnson: hep-th/9602052 [C]; J. Polchinski: hep-th/9611050 [C]. [16] C. G. Callan and J. M. Maldacena: Nucl. Phys. B472 (1996) 591, hep-th/9602043 [A]. [17] G. Horowitz and A. Strominger: Phys. Rev. Lett. 77 (1996) 2368, hepth/9602051 [A]. [18] J. M. Maldacena and L. Susskind: Nucl. Phys. B475 (1996) 679, hepth/9604042 [A]. [19] G. W. Gibbons and S. W. Hawking: Phys. Rev. D15 (1977) 2752 [A]. [20] A. Ashtekar, J. Baez, A. Corichi, and K. Krasnov: Phys. Rev. Lett. 80 (1998) 904, gr-qc/9710007 [A]. [21] A. Strominger: J. High Energy Phys. 2 (1998) 9, hep-th/9712251 [A]. 19

[1] [1] Hawking 8 Feynman 8 Weinberg [2] Polchinski Fermi liquid 20

[1] private communications. [2] S. Weinberg: Prog. Theor. Phys. Suppl. 86 (1986) 43. [3] J. Polchinski: in Recent Directions in Particle Theory, Proceedings of the 1992 TASI, eds. J. Harvey and J. Polchinski (World Scientific, Singapore, 1993) hep-th/9210046. [4] J. Fröhlich : private communications. [3] [4] 21