1 (Contents) (4) Why Has the Superstring Theory Collapsed? Noboru NAKANISHI 2 2. A Periodic Potential Problem

Size: px
Start display at page:

Download "1 (Contents) (4) Why Has the Superstring Theory Collapsed? Noboru NAKANISHI 2 2. A Periodic Potential Problem"

Transcription

1

2 1 (Contents) (4) Why Has the Superstring Theory Collapsed? Noboru NAKANISHI 2 2. A Periodic Potential Problem in Quantum Mechanics (4) Kenji SETO Anti-commutativity among Linearly Independent Imaginary Units Katsusada MORITA The Parity Operator Minoru YONEZAWA The Parity Operator A Comment Noboru NAKANISHI Editorial Comments Shozo NIIZEKI, Tadashi YANO 29

3 Why Has the Superstring Theory Collapsed? * 1 Noboru NAKANISHI * *3 30 *4 72, 345 (1986), ( , 48, 44 (1993). superalgebra graded algebra indecomposable extension SUSY 1 x µ ( ) 1 ( ) *5 SUSY *1 *2 nbr-nak@trio.plala.or.jp *3 *4 3 woit/wordpress P. Woit Some Early Criticism of String Theory, October 30, 2006 *5 3 2

4 SUSY 2 SUSY 2 2 SU(3) SU(2) U(1) *6 S SUSY SUSY SUSY S 2 SUSY SUSY SUSY *7 SUSY SUSY SUSY 1/2 SUSY *6 *7 SUSY SUSY SUSY 3

5 S (NG) SUSY 1/2 NG SUSY NG NG SUSY SUSY (SUGRA) NG SUSY S SUSY SUSY SUSY 1 SUSY 2 1 SUSY CERN LHC SUSY is dead SUSY SUSY 4

6 1/2 *8 BRS *9 x µ x µ NG 2 SU(2) U(1) SU(2) U(1) U(1) U(1) 20 SUSY SUSY SUSY ( *8 *9 FP BRS 5

7 x µ SUSY x µ SUSY SUSY SUSY 3 S 1 2 S S s t 2 2 s s S * 10 l * 11 l s l = α(s) α(s) * 12 α(s) = α 0 + α s *10 *11 *12 6

8 α s 1 t t t α(s) (s 0) log t 1 α 0 1 α 0 = 1 1 s < 0 s * 13 N 2 2 N 4 N = 4 B( α(s), α(t)) = Γ( α(s))γ( α(t)) Γ( α(s) α(t)) = 1 0 dx x α(s) 1 (1 x) α(t) 1 * 14 N N 3 * 15 3 SU(3) *13 *14 N = *15 N 3 7

9 2 2 D 2 * 16 D 2 * 17 2 * 18 D = D * 19 4 SUSY 2 α 0 = 2 2 c h 1/2π ħ 1 20 *16 *17 S *18 *19 D = 26 8

10 α 2 s [l = ] 1 α * /2 * n + 2 (n = 0, 1, 2, ) n = SO(32) E 8 E 8 SU(3) SU(2) U(1) SU(5) SO(10) * 22 * *21 2 *22 9

11 p + 1 Dp 11 M * 23 4 * (2010) 10

12 * * 25 * 26 6 a s (a = (1/x) α > 1) s = p µ p µ = p 2 0 p 2 p µ p 0 p 2 0 *24 D 3 * (2012) *26 L. Smolin The Troubles with Physics (2006) p.279-p.282 S. Mandelstam Mandelstam 1 11

13 2 T T T T T* T T* T T* * T T* 2 * 28 5 The only game in town * 29 The only Game in Town K. Vonnegut * 30 A guy with the gambling sickness loses his shirt every night in a poker game. Somebody tells him that the game is crooked, rigged to send him to the poorhouse. And he says, haggardly, I know, I know. But it s the only game in town. *27 Φ = 0 Φ 1 T Φ T* T* *28 M. Abe and N. Nakanishi, Prog. Theor. Phys. 115, 1151 (2006) 113, 76 (2006) *29 Not Even Wrong (2006) P. Woit *30 B. Schroer, String theory and the crisis in particle physics, special volume of I. J. M. P. D (2006) 12

14 (4) A Periodic Potential Problem in Quantum Mechanics (4) Kenji Seto 1 Kronig- Penney Schrödinger [ ħ2 d 2 ] 2m dx 2 + V (x) Ψ = EΨ (1.1) V (x) 2l V (x + 2l) = V (x) l x < l V (x) = V 0 ( x l ) 2 (1.2) V 0 x, V 0, E x l x, 2ml 2 ħ 2 V 0 V 0, 2ml 2 ħ 2 E E (1.3) [ d 2 ] dx 2 + E V (x) Ψ = 0 (1.4) V (x) 2 V (x + 2) = V (x) 1 x < 1 V (x) = V 0 x 2 (1.5) 2 µ µ = (4V 0 ) 1/4 (2.1) seto@pony.ocn.ne.jp 13

15 x z E κ z = µx, κ = E µ (2.2) 1 x < 1 [ d 2 dz 2 + κ z2 4 ] Ψ = 0 (2.3) Weber (Weber ) D κ (z) 1 F 1 D κ (z) = 2 κ/2 [ π e z2 /4 1 ( Γ ((1 κ)/2) 1 F 1 κ 2, 1 2 ; z 2 ) 2 2 z ( 1 κ Γ ( κ/2) 1 F 1, ; z 2 )] 2 (2.4) *1 Weber Hermite H n (z) κ n D n (z) = e z2 /4 H n (z) Hermite Weber 1 D κ 1 (iz) = 2 (κ+1)/2 [ π e z2 /4 1 ( κ + 1 Γ ((κ + 2)/2) 1 F 1, 2 1 ) 2 ; z2 2 2 iz ( κ )] Γ ((κ + 1)/2) 1 F 1, 2 2 ; z2 2 (2.5) Floquet (2.3) ( S 1 (z) =e z2 /4 κ F 1, 2 ( S 2 (z) =ze z2 /4 κ F 1, 2 1 ) 2 ; z ; z2 2 (2.3) 2 *2 S 1 (z) S 2 (z) S 1, S 2 Wronskian ) (2.6) W (z) = S 1 (z)s 2(z) S 1(z)S 2 (z) (2.7) z S 1, S 2 (2.3) Wronskian z = 0 W (z) 1 (2.8) (1.4) 1 x < 1 A, B Ψ(x) = AS 1 (µx) + BS 2 (µx) (2.9) *1 3 ( ) p λ κ *2 Kummer ( p.67) 1 F 1 (α, γ; z) = e z 1F 1 (γ α, γ; z) S 1, S 2 (2.4)

16 Floquet 1 K (0 K π) e ik e ik 1 x < 3 Ψ(x) = e ik[ ( ) ( )] AS 1 µ(x 2) + BS2 µ(x 2), or Ψ(x) = e ik [ ( ) ( )] AS 1 µ(x 2) + BS2 µ(x 2) (2.10) K 2 1 K = 0, π 2 K 1 K 0 < K < π (2.9) (2.10) x = 1 AS 1 (µ) + BS 2 (µ) = e ik[ AS 1 (µ) BS 2 (µ) ] AS 1(µ) + BS 2(µ) = e ik[ AS 1(µ) + BS 2(µ) ] (2.11) S 1, S 2 S 1, S 2 ( ) ( ) ( ) (1 e ik )S 1 (µ) (1 + e ik )S 2 (µ) A 0 (1 + e ik )S 1(µ) (1 e ik )S 2(µ) = B 0 (2.12) A, B cos(k) = S 1 (µ)s 2(µ) + S 1(µ)S 2 (µ) (2.13) (2.8) Wronskian 1 K 1 S 1, S 2 κ, E A, B (2.11) 1 A = (1 + e ik )S 2 (µ), B = (1 e ik )S 1 (µ) (2.14) x n 2n 1 x < 2n + 1 Ψ(x) = e ikn[ (1 + e ik ( ) )S 2 (µ)s 1 µ(x 2n) (1 e ik ( )] )S 1 (µ)s 2 µ(x 2n) (2.15) 3 2 E, E κ, K κ, κ, K, K S 1, S 2 Ψ(x, E), S i (z, κ), i = 1, 2 15

17 (2.15) Ψ(x, E)Ψ(x, E )dx = n= 2n+1 2n 1 ( Ψ(x, E)Ψ(x, E )dx = n= lim M M n= M ) 1 e i(k K )n Ψ(x, E)Ψ(x, E )dx 1 (3.1) e i(k K )n = 2πδ(K K ), 0 < K, K < π (3.2) E, E (1.4) [ d 2 ] dx 2 + E V (x) Ψ(x, E) = 0, [ d 2 ] dx 2 + E V (x) Ψ(x, E ) = 0 (3.3) E 1 Ψ(x, E ) 2 Ψ(x, E) d [ Ψ(x, E) dψ(x, E ) dx dx Ψ(x, E)Ψ(x, E )dx = dψ(x, E) ] Ψ(x, E ) (E E )Ψ(x, E)Ψ(x, E ) = 0 (3.4) dx 1 [ E E Ψ(x, E) dψ(x, E ) dx dψ(x, E) ] 1 Ψ(x, E ) dx 1 n = 0 (2.15) 16 S 1, S 2 Wronskian (2.8) (2.13) 1 1 Ψ(x, E)Ψ(x, E )dx = 2µ E E [ S 1 (µ, κ)s 2 (µ, κ) [ (1 + e i(k K ) ) cos(k ) (e ik + e ik ) ] (3.5) S 1 (µ, κ )S 2 (µ, κ ) [ (1 + e i(k K ) ) cos(k) (e ik + e ik ) ]] (3.6) (3.2) (3.6) (3.1) E, E (2.2) κ, κ Ψ(x, E)Ψ(x, E )dx = 4π [S µ(κ κ 1 (µ, κ)s 2 (µ, κ) [ (1 + e i(k K ) ) cos(k ) (e ik + e ik ) ] ) S 1 (µ, κ )S 2 (µ, κ ) [ (1 + e i(k K ) ) cos(k) (e ik + e ik ) ]] δ(k K ) (3.7) 1 κ (2.13) K K κ κ κ κ K = K κ κ κ κ 0/0 l Hôpital κ κ κ Ψ(x, E)Ψ(x, E )dx = 8π µ S 1(µ, κ)s 2 (µ, κ) sin(k) dk dκ δ(k K ) (3.8) 16

18 0 < K < π sin(k) S 1 (µ, κ)s 2 (µ, κ) dk/dκ E Ψ(x, E)Ψ(x, E )dx = N 2 (E)δ(E E ), N 2 (E) = 8πµ S 1 (µ, κ)s 2 (µ, κ) sin(k) (3.9) N(E) Ψ(x, E)/N(E) K (2.10) 2 sin(k), dk/dκ 4 (2.6) S 1 (z, κ), S 2 (z, κ) κ S 1 (z, 0) = e z2 /4, S 2 (z, 1) = ze z2 /4 (4.1) κ 1-1, 1-2 z κ S 1 ( 1-1) S 2 ( 1-2) 0 z 5, 0 κ 10 S 1 κ 1.6 z S 2 0 κ < 1 z κ 1 2 z S 1, S 2 κ 4 z S S 1 (z, κ) 1-2 S 2 (z, κ) 17

19 (2.13) V 0 E K V 0 = 50 2 K (3.8) S 1 (µ, κ)s 2 (µ, κ) S 1 (µ, κ)s 2 (µ, κ) dk/de = dk/µ 2 dκ 2 K E (V 0 = 50) 3 V 0 V 0 - E (2.13) V 0 - E 5 4 (2.6) S 1 (z), S 2 (z) 50 18

20 100 z 5.5 z z z z 5.5 V 0 (2.1) µ (2.2) z, κ V 0 < 0 [ ] 19

21 1 1) Anti-commutativity among Linearly Independent Imaginary Units Katsusada Morita 2) n a 1 a n a 2 n a 2 = a 2 z z 2 = z 2 1 x, y x, y xy = x y 2 z = x + iy z 2 = x 2 + y 2 3) z 1 z 2 = z 1 z 2 3 [1] a = a 0 + ia 1 + ja 2, b = b 0 + ib 1 + jb 2 {1, i, j} 1 4) ( ) ab : ab = (ab) 0 + i(ab) 1 + j(ab) 2 + ija 1 b 2 + jia 2 b 1 (ab) 0 = a 0 b 0 a 1 b 1 a 2 b 2 (ab) 1 = a 0 b 1 + a 1 b 0 (ab) 2 = a 0 b 2 + a 2 b 0 (1.1) i 2 = j 2 = 1 ij + ji = 0 (1.2) 5) (1.1) ij(a 1 b 2 a 2 b 1 ) ij(ab) 3 ab 2 = (ab) (ab) (ab) (ab) 2 3 = a 2 b 2 a 2 z 2 = x 2 + y 2 a 2 = a a a 2 2 ab 2 4 ( {1, i, j, ij} ) ij {1, i, j} ij = α + βi + γj, 1) 2) kmorita@cello.ocn.ne.jp 3) z = 0 z 2 = 0 z = 0 x = y = 0. {1, i} a = a 0 + ia 1 + ja 2 = 0 a 2 = a a2 1 + a2 2 = 0 a = 0 a 0 = a 1 = a 2 = 0 {1, i, j} 1 4) 1 Hamilton Dickson [2] 1 {i, j, k} Frobenius 5) ij = ji 0 = i 2 j 2 = (i j)(i+j) j = ±i a a = a 0 +i(a 1 ±a 2 ) ij ji ij = αji, α( +1) R (ij) 2 = (ji) 2 = α α 2 = 1 α 1 α = 1 (1.2) Hamilton [3] 20

22 α, β, γ (ij) 2 = 1 6) i(ij) = (ij)i, j(ij) = (ij)j ij {i, j} {i, j, ij} 1 7) ab 2 ab {1, i, j, ij} 3 a 2 b 2 ab 2 = a 2 b 2 Hurwitz a = b (1.2) (a 2 ) 3 = 0 a 2 2 = a 4 {i, j} (1.2) (1.2) {1, i, j} 1 a a 2 2 = a 4 {1, i, j} 1 2 (1.2) {1, i, j} 1 3 n (n 1) 1 n a a 2 = a 2 4 Hamilton [1] 2 1 Hamilton a [1] a = a 0 + ia 1 + ja 2, i 2 = j 2 = 1, a 0, a 1, a 2 R (2.1) b = b 0 + ib 1 + jb 2, b 0, b 1, b 2 R (1.1) ij ji 2 ( ) z 1 z 2 = z 1 z 2 a = b a µ = b µ (µ = 0, 1, 2) a 2 a 2 = a 2 0 a 2 1 a ia 0 a 1 + 2ja 0 a 2 + (ij + ji)a 1 a 2 (2.2) (1.2) a 2 a 2 2 = a 4 : a 2 2 = (a 2 0 a 2 1 a 2 2) 2 + (2a 0 a 1 ) 2 + (2a 0 a 2 ) 2 = (a a a 2 2) 2 = a 4 (2.3) (2.3) {i, j} (1.2) Hamilton [1] Hamilton ) Hamilton [1] [3] a = a 0 + ia 1 + ja 2 a = (a 0, a 1, a 2 ) 1 = (1, 0, 0), i = (0, 1, 0), j = (0, 0, 1) {1, i, j} α 0 + iα 1 + jα 2 = 0, α 0, α 1, α 2 R (2.4) 6) Hamilton k = ij, k 2 = 1 7)

23 α 0 = α 1 = α 2 = 0 {i, j} 1 iα 1 + jα 2 = 0, α 1, α 2 R (2.5) α 1 = α 2 = 0 (2.5) 2 (α α 2 2) + (ij + ji)α 1 α 2 = 0, ij + ji R (2.6) {i, j} (1.2) α 1 = α 2 = 0 {i, j} 1 {1, i, j} 1 (i ± j) 2 < 0 (i ± j) w = 1 w = i ± j {1, i, j} 1 (i ± j) 2 < 0 ij + ji = 2α R, α < 1 8) α 0 [2] {i, j} α < 1 a, b I = i, J = ai + bj, a = ±α/ 1 α 2, b = ±1/ 1 α 2 (2.7) I 2 = J 2 = 1, IJ + JI = 0 (2.8) I = i, J = j ( (2.1) a 1,2 ) (1.2) 1 {i, j} 3 (n 1) 1 [4] a, b {1, e i } i=1,2,3 l a = a 0 e 0 + a i e i + a 4 l a 0, a i, a 4 R b = b 0 e 0 + b i e i + b 4 l b 0, b i, b 4 R e 2 0 = e 0, l 2 = 1, le i = e i l (i = 1, 2, 3) ab = (ab) 0 e 0 + (ab) i e i + (ab) (4i) e i l + (ab) 4 l (i, j, k = 1, 2, 3 l [4] {e i, le i, l} {e A } A=1,2,3,,7 ): (ab) 0 = a 0 b 0 a i b i a 4 b 4 (ab) i = (a 0 b i + a i b 0 ) + ϵ jki a j b k (ab) 4i = a i b 4 a 4 b i (ab) 4 = a 0 b 4 + a 4 b 0 (2.9) (2.10) ab 2 = (ab) (ab) 2 i + (ab)2 4 + (ab) 2 4i ab 2 = a 2 b 2 a = b (a 2 ) 4i = 0 a 2 a 2 2 = a 4 8) ij + ji = 2β R, β < 1 (2.6) α 1,2 α 1 = α 2 = 0 22

24 3 n a = a 0 + a 1 e 1 + a 2 e a n 1 e n 1, a µ (µ = 0, 1,, n 1) R (3.1) 1 {e i } i=1,2,,n 1 e i e j + e j e i = 2δ ij (3.2) e i e j = δ ij + c ijk e k, c jik = c ijk {e i } {E k } e i e j = δ ij + c ijk E k, c jik = c ijk, E k E k = δ kk a 9) 1 1 e 1 = (0, 1, 0, 0,, 0, 0) e 2 = (0, 0, 1, 0,, 0, 0). e n 1 = (0, 0, 0, 0,, 0, 1) (3.3) α 1 e 1 + α 2 e α n 1 e n 1 = (0, α 1, α 2,, α n 1 ) = (0, 0, 0,, 0) α 1 = α 2 = = α n 1 = 0 e i e 2 1 = e 2 2 = = e 2 n 1 = ( 1, 0,, 0) e 0 ( ) (α 1 e 1 + α 2 e α n 1 e n 1 ) 2 = i i j αi α i α j (e i e j + e j e i ) = 0 2 i j e i e j + e j e i = 0 (i j ) (3.4) i α i = 0 {e i } i=1,2,,n ) 1 (3.4) 11) i, j(i j) {1, e i, e j } 1 (e i ± e j ) 2 < 0 e i e j + e j e i = 2α ij, α ij < 1 {e i, e j } {I i, I j } {I i, I j } (2.7), (2.8) {I i, I j } = {e i, e j } (3.4) {e i } i=1,2,,n 1 1 (3.4) (3.4) ( Einstein ) a 2 2 = (a 0 + a 1 e 1 + a 2 e a n 1 e n 1 ) 2 2 = (a 0 + a i e i ) 2 2 = a a 0 a i e i + a i a j e i e j 2 = a a 0 a i e i + a i a j (e i e j + e j e i )/2 2 = (a 2 0 a 2 i ) 2 + (2a 0 a i ) 2 = (a a 2 i ) 2 = a 4 (3.5) 9) e 1 = i, e 2 = j E 3 = e 1 e 2, E3 2 = 1 10) j 1 e 1 e j = e j e 1 n a = a 0 + a i e i a = a 0 ± i(a a n), i e 1 11) [4] A 23

25 a 2 = a 2 (3.6) (2.3) n 1 a = (a 0, a 1,, a n 1 ) 2 a 2 ab = a b a = b (3.6) (3.6) (3.6) n a 2 a 2 n (3.6) (3.4) a {1, e 1,, e n 1 } 1 ( ) 4 Hamilton [1] ( {i, j}(i 2 = j 2 = 1) ) {1, i, j} 3 {1, i, j} 1 Hamilton a a 2 = a 2 {i, j} a a aa Hamilton Dickson [2] a 1 a 2 = a 2 n a 2 a 2 n n a {e 0, e 1,, e n 1 } 1 Cayley-Dickson a 2 = a 2 ab = a b R, C, H, O Hurwitz, ( ) [1] W. R. Hamilton, Quaternions, Proc. Roy. Irish Acad. vol. L(1945), [2] L. E. Dickson, Linear Algebras, Cambridge: at the University Press, [3] ( 2014). [4] K. Morita, Quasi-Associativity and Cayley-Dickson Algebras, PTEP, 2014, 013A03 (19 pages). 24

26 1 The Parity Operator Minoru Yonezawa 2 1 (Parity operator) P 3 2 [ ] [ 1 n P = ( 2x)n n! x n n=0 m=0 ] [ 1 m ( 2y)m m! y m l=0 ] 1 l ( 2z)l l! z l (2.1) 3 1 (Taylor expansion) f(x + a) = n=0 ( f( x) = exp a d ) f(x) dx = a= 2x ( 1 dn an f(x) = exp a d ) f(x) (2.2) n! dxn dx n=0 1 n! dn ( 2x)n f(x) (2.3) dxn (2.3) (2.3) a f(x) x a = 2x 4 P f(x) = f( x), 1 dn P = ( 2x)n n! dx n (2.4) n=0 1 2 m-yonezawa@mtc.biglobe.ne.jp

27 3 p x = iħ d dx x x + a (unitary operator) U = e i a ħ p x f(x + a) = Uf(x) (2.5) 3 x x pp (translation operator) 2 1 (2.2) a = 2x n 2 f( x) = n=0 ( 1 dn ( 2x)n f(x) = exp 2x d ) f(x) (3.1) n! dxn dx ( exp 2x d ) = dx (3.1) n=0 ( 1 2x d ) n (3.2) n! dx ( ( 2x) n dn dx n 2x d ) n (3.3) dx (2.2) (2.2) a = 2x f(x + a) = f( x) a = a = 2x 26

28 (2.3) 1 (2.3) 2 Taylor Taylor f(x+h) x+h x f(x) f (n) (x), (n = 1, 2, 3, ) f(x + h) h f(x + h) = a 0 + a 1 h + a 2 h 2 + a 3 h 3 + a 4 h a n h n + (3.4) h a 0, a 1, a 2, a 3, a 4, (3.4) h = 0 a 0 = f(x) (3.4) h f (x + h) = a 1 + 2a 2 h + 3a 3 h 2 + 4a 4 h na n h n 1 + (3.5) (3.5) h = 0 a 1 = f (x) (3.5) h f (x + h) = 2a a 3 h + 3 4a 4 h (n 1)na n h n 2 + (3.6) (3.6) h = 0 a 2 = 1 2! f (x) (3.6) h f (x + h) = 1 2 3a a 4 h + + (n 2)(n 1)na n h n 3 + (3.7) (3.7) h = 0 a 3 = 1 3! f (x) a n = 1 n! f (n) (x) (3.4) f(x + h) = f(x) + hf (x) + h2 2! f (x) + h3 3! f (x) + + hn n! f n (x) + (3.8) ( ) 27

29 The Parity Operator A Comment 1 Noboru NAKANISHI 2 P P f(x) = d dx P a x dyf(y) (1) dyk(x, y)f(y) (2) K(x, y) = δ(x + y) (3) ( ) 1 2 nbr-nak@trio.plala.or.jp 28

30

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji 8 4 2018 6 2018 6 7 1 (Contents) 1. 2 2. (1) 22 3. 31 1. Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji SETO 22 3. Editorial Comments Tadashi

More information

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n . X {x, x 2, x 3,... x n } X X {, 2, 3, 4, 5, 6} X x i P i. 0 P i 2. n P i = 3. P (i ω) = i ω P i P 3 {x, x 2, x 3,... x n } ω P i = 6 X f(x) f(x) X n n f(x i )P i n x n i P i X n 2 G(k) e ikx = (ik) n

More information

[ ] = L [δ (D ) (x )] = L D [g ] = L D [E ] = L Table : ħh = m = D D, V (x ) = g δ (D ) (x ) E g D E (Table )D = Schrödinger (.3)D = (regularization)

[ ] = L [δ (D ) (x )] = L D [g ] = L D [E ] = L Table : ħh = m = D D, V (x ) = g δ (D ) (x ) E g D E (Table )D = Schrödinger (.3)D = (regularization) . D............................................... : E = κ ............................................ 3.................................................

More information

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2 filename=mathformula58.tex ax + bx + c =, x = b ± b 4ac, (.) a x + x = b a, x x = c a, (.) ax + b x + c =, x = b ± b ac. a (.3). sin(a ± B) = sin A cos B ± cos A sin B, (.) cos(a ± B) = cos A cos B sin

More information

30 3..........................................................................................3.................................... 4.4..................................... 6 A Q, P s- 7 B α- 9 Q P ()

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

Chebyshev Schrödinger Heisenberg H = 1 2m p2 + V (x), m = 1, h = 1 1/36 1 V (x) = { 0 (0 < x < L) (otherwise) ψ n (x) = 2 L sin (n + 1)π x L, n = 0, 1, 2,... Feynman K (a, b; T ) = e i EnT/ h ψ n (a)ψ

More information

phs.dvi

phs.dvi 483F 3 6.........3... 6.4... 7 7.... 7.... 9.5 N (... 3.6 N (... 5.7... 5 3 6 3.... 6 3.... 7 3.3... 9 3.4... 3 4 7 4.... 7 4.... 9 4.3... 3 4.4... 34 4.4.... 34 4.4.... 35 4.5... 38 4.6... 39 5 4 5....

More information

QMI13a.dvi

QMI13a.dvi I (2013 (MAEDA, Atsutaka) 25 10 15 [ I I [] ( ) 0. (a) (b) Plank Compton de Broglie Bohr 1. (a) Einstein- de Broglie (b) (c) 1 (d) 2. Schrödinger (a) Schrödinger (b) Schrödinger (c) (d) 3. (a) (b) (c)

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i July 8, 4. H H H int H H H int H int (x)d 3 x Schrödinger Picture Ψ(t) S e iht Ψ H O S Heisenberg Picture Ψ H O H (t) e iht O S e iht Interaction Picture Ψ(t) D e iht Ψ(t) S O D (t) e iht O S e ih t (Dirac

More information

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1 QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1 (vierbein) QCD QCD 1 1: QCD QCD Γ ρ µν A µ R σ µνρ F µν g µν A µ Lagrangian gr TrFµν F µν No. Yes. Yes. No. No! Yes! [1] Nash & Sen [2] Riemann

More information

4 14 4 14 4 1 1 4 1.1................................................ 4 1............................................. 4 1.3................................................ 5 1.4 1............................................

More information

6 6.1 L r p hl = r p (6.1) 1, 2, 3 r =(x, y, z )=(r 1,r 2,r 3 ), p =(p x,p y,p z )=(p 1,p 2,p 3 ) (6.2) hl i = jk ɛ ijk r j p k (6.3) ɛ ijk Levi Civit

6 6.1 L r p hl = r p (6.1) 1, 2, 3 r =(x, y, z )=(r 1,r 2,r 3 ), p =(p x,p y,p z )=(p 1,p 2,p 3 ) (6.2) hl i = jk ɛ ijk r j p k (6.3) ɛ ijk Levi Civit 6 6.1 L r p hl = r p (6.1) 1, 2, 3 r =(x, y, z )=(r 1,r 2,r 3 ), p =(p x,p y,p z )=(p 1,p 2,p 3 ) (6.2) hl i = jk ɛ ijk r j p k (6.3) ɛ ijk Levi Civita ɛ 123 =1 0 r p = 2 2 = (6.4) Planck h L p = h ( h

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

DVIOUT-fujin

DVIOUT-fujin 2005 Limit Distribution of Quantum Walks and Weyl Equation 2006 3 2 1 2 2 4 2.1...................... 4 2.2......................... 5 2.3..................... 6 3 8 3.1........... 8 3.2..........................

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

Hilbert, von Neuman [1, p.86] kt 2 1 [1, 2] 2 2

Hilbert, von Neuman [1, p.86] kt 2 1 [1, 2] 2 2 hara@math.kyushu-u.ac.jp 1 1 1.1............................................... 2 1.2............................................. 3 2 3 3 5 3.1............................................. 6 3.2...................................

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í Markov 2009 10 2 Markov 2009 10 2 1 / 25 1 (GA) 2 GA 3 4 Markov 2009 10 2 2 / 25 (GA) (GA) L ( 1) I := {0, 1} L f : I (0, ) M( 2) S := I M GA (GA) f (i) i I Markov 2009 10 2 3 / 25 (GA) ρ(i, j), i, j I

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

LINEAR ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University

LINEAR ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University LINEAR ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University 2002 2 2 2 2 22 2 3 3 3 3 3 4 4 5 5 6 6 7 7 8 8 9 Cramer 9 0 0 E-mail:hsuzuki@icuacjp 0 3x + y + 2z 4 x + y

More information

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2 Hanbury-Brown Twiss (ver. 1.) 24 2 1 1 1 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 3 3 Hanbury-Brown Twiss ( ) 4 3.1............................................

More information

Black-Scholes [1] Nelson [2] Schrödinger 1 Black Scholes [1] Black-Scholes Nelson [2][3][4] Schrödinger Nelson Parisi Wu [5] Nelson Parisi-W

Black-Scholes [1] Nelson [2] Schrödinger 1 Black Scholes [1] Black-Scholes Nelson [2][3][4] Schrödinger Nelson Parisi Wu [5] Nelson Parisi-W 003 7 14 Black-Scholes [1] Nelson [] Schrödinger 1 Black Scholes [1] Black-Scholes Nelson [][3][4] Schrödinger Nelson Parisi Wu [5] Nelson Parisi-Wu Nelson e-mail: takatoshi-tasaki@nifty.com kabutaro@mocha.freemail.ne.jp

More information

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ SO(3) 71 5.7 5.7.1 1 ħ L k l k l k = iϵ kij x i j (5.117) l k SO(3) l z l ± = l 1 ± il = i(y z z y ) ± (z x x z ) = ( x iy) z ± z( x ± i y ) = X ± z ± z (5.118) l z = i(x y y x ) = 1 [(x + iy)( x i y )

More information

( 12 ( ( ( ( Levi-Civita grad div rot ( ( = 4 : 6 3 1 1.1 f(x n f (n (x, d n f(x (1.1 dxn f (2 (x f (x 1.1 f(x = e x f (n (x = e x d dx (fg = f g + fg (1.2 d dx d 2 dx (fg = f g + 2f g + fg 2... d n n

More information

SO(3) 49 u = Ru (6.9), i u iv i = i u iv i (C ) π π : G Hom(V, V ) : g D(g). π : R 3 V : i 1. : u u = u 1 u 2 u 3 (6.10) 6.2 i R α (1) = 0 cos α

SO(3) 49 u = Ru (6.9), i u iv i = i u iv i (C ) π π : G Hom(V, V ) : g D(g). π : R 3 V : i 1. : u u = u 1 u 2 u 3 (6.10) 6.2 i R α (1) = 0 cos α SO(3) 48 6 SO(3) t 6.1 u, v u = u 1 1 + u 2 2 + u 3 3 = u 1 e 1 + u 2 e 2 + u 3 e 3, v = v 1 1 + v 2 2 + v 3 3 = v 1 e 1 + v 2 e 2 + v 3 e 3 (6.1) i (e i ) e i e j = i j = δ ij (6.2) ( u, v ) = u v = ij

More information

all.dvi

all.dvi 72 9 Hooke,,,. Hooke. 9.1 Hooke 1 Hooke. 1, 1 Hooke. σ, ε, Young. σ ε (9.1), Young. τ γ G τ Gγ (9.2) X 1, X 2. Poisson, Poisson ν. ν ε 22 (9.) ε 11 F F X 2 X 1 9.1: Poisson 9.1. Hooke 7 Young Poisson G

More information

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a = II 6 ishimori@phys.titech.ac.jp 6.. 5.4.. f Rx = f Lx = fx fx + lim = lim x x + x x f c = f x + x < c < x x x + lim x x fx fx x x = lim x x f c = f x x < c < x cosmx cosxdx = {cosm x + cosm + x} dx = [

More information

E 1/2 3/ () +3/2 +3/ () +1/2 +1/ / E [1] B (3.2) F E 4.1 y x E = (E x,, ) j y 4.1 E int = (, E y, ) j y = (Hall ef

E 1/2 3/ () +3/2 +3/ () +1/2 +1/ / E [1] B (3.2) F E 4.1 y x E = (E x,, ) j y 4.1 E int = (, E y, ) j y = (Hall ef 4 213 5 8 4.1.1 () f A exp( E/k B ) f E = A [ k B exp E ] = f k B k B = f (2 E /3n). 1 k B /2 σ = e 2 τ(e)d(e) 2E 3nf 3m 2 E de = ne2 τ E m (4.1) E E τ E = τe E = / τ(e)e 3/2 f de E 3/2 f de (4.2) f (3.2)

More information

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ II p = mv p x > h/4π λ = h p m v Ψ 2 Ψ Ψ Ψ 2 0 x P'(x) m d 2 x = mω 2 x = kx = F(x) dt 2 x = cos(ωt + φ) mω 2 = k ω = m k v = dx = -ωsin(ωt + φ) dt = d 2 x dt 2 0 y v θ P(x,y) θ = ωt + φ ν = ω [Hz] 2π

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

³ÎΨÏÀ

³ÎΨÏÀ 2017 12 12 Makoto Nakashima 2017 12 12 1 / 22 2.1. C, D π- C, D. A 1, A 2 C A 1 A 2 C A 3, A 4 D A 1 A 2 D Makoto Nakashima 2017 12 12 2 / 22 . (,, L p - ). Makoto Nakashima 2017 12 12 3 / 22 . (,, L p

More information

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63> 電気電子数学入門 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/073471 このサンプルページの内容は, 初版 1 刷発行当時のものです. i 14 (tool) [ ] IT ( ) PC (EXCEL) HP() 1 1 4 15 3 010 9 ii 1... 1 1.1 1 1.

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c)   yoshioka/education-09.html pdf 1 2009 1 ( ) ( 40 )+( 60 ) 1 1. 2. Schrödinger 3. (a) (b) (c) http://goofy.phys.nara-wu.ac.jp/ yoshioka/education-09.html pdf 1 1. ( photon) ν λ = c ν (c = 3.0 108 /m : ) ɛ = hν (1) p = hν/c = h/λ (2) h

More information

2 2 1?? 2 1 1, 2 1, 2 1, 2, 3,... 1, 2 1, 3? , 2 2, 3? k, l m, n k, l m, n kn > ml...? 2 m, n n m

2 2 1?? 2 1 1, 2 1, 2 1, 2, 3,... 1, 2 1, 3? , 2 2, 3? k, l m, n k, l m, n kn > ml...? 2 m, n n m 2009 IA I 22, 23, 24, 25, 26, 27 4 21 1 1 2 1! 4, 5 1? 50 1 2 1 1 2 1 4 2 2 2 1?? 2 1 1, 2 1, 2 1, 2, 3,... 1, 2 1, 3? 2 1 3 1 2 1 1, 2 2, 3? 2 1 3 2 3 2 k, l m, n k, l m, n kn > ml...? 2 m, n n m 3 2

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

newmain.dvi

newmain.dvi 数論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/008142 このサンプルページの内容は, 第 2 版 1 刷発行当時のものです. Daniel DUVERNEY: THÉORIE DES NOMBRES c Dunod, Paris, 1998, This book is published

More information

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t 6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]

More information

( )/2 hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1

( )/2   hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1 ( )/2 http://www2.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html 1 2011 ( )/2 2 2011 4 1 2 1.1 1 2 1 2 3 4 5 1.1.1 sample space S S = {H, T } H T T H S = {(H, H), (H, T ), (T, H), (T, T )} (T, H) S

More information

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence Hanbury-Brown Twiss (ver. 2.) 25 4 4 1 2 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 4 3 Hanbury-Brown Twiss ( ) 5 3.1............................................

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

December 28, 2018

December 28, 2018 e-mail : kigami@i.kyoto-u.ac.jp December 28, 28 Contents 2............................. 3.2......................... 7.3..................... 9.4................ 4.5............. 2.6.... 22 2 36 2..........................

More information

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x 7 7.1 7.1.1 Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x 3 )=(x 0, x )=(ct, x ) (7.3) E/c ct K = E mc 2 (7.4)

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

30 I .............................................2........................................3................................................4.......................................... 2.5..........................................

More information

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes ) ( 3 7 4 ) 2 2 ) 8 2 954 2) 955 3) 5) J = σe 2 6) 955 7) 9) 955 Statistical-Mechanical Theory of Irreversible Processes 957 ) 3 4 2 A B H (t) = Ae iωt B(t) = B(ω)e iωt B(ω) = [ Φ R (ω) Φ R () ] iω Φ R (t)

More information

液晶の物理1:連続体理論(弾性,粘性)

液晶の物理1:連続体理論(弾性,粘性) The Physics of Liquid Crystals P. G. de Gennes and J. Prost (Oxford University Press, 1993) Liquid crystals are beautiful and mysterious; I am fond of them for both reasons. My hope is that some readers

More information

1 1.1 / Fik Γ= D n x / Newton Γ= µ vx y / Fouie Q = κ T x 1. fx, tdx t x x + dx f t = D f x 1 fx, t = 1 exp x 4πDt 4Dt lim fx, t =δx 3 t + dxfx, t = 1

1 1.1 / Fik Γ= D n x / Newton Γ= µ vx y / Fouie Q = κ T x 1. fx, tdx t x x + dx f t = D f x 1 fx, t = 1 exp x 4πDt 4Dt lim fx, t =δx 3 t + dxfx, t = 1 1 1.1......... 1............. 1.3... 1.4......... 1.5.............. 1.6................ Bownian Motion.1.......... Einstein.............. 3.3 Einstein........ 3.4..... 3.5 Langevin Eq.... 3.6................

More information

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ = 1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint ( 9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) 2. 2.1 Ĥ ψ n (r) ω n Schrödinger Ĥ ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ + Ĥint (t)] ψ (r, t), (2) Ĥ int (t) = eˆxe cos ωt ˆdE cos ωt, (3)

More information

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,. 24(2012) (1 C106) 4 11 (2 C206) 4 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 (). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5... 6.. 7.,,. 8.,. 1. (75%)

More information

振動と波動

振動と波動 Report JS0.5 J Simplicity February 4, 2012 1 J Simplicity HOME http://www.jsimplicity.com/ Preface 2 Report 2 Contents I 5 1 6 1.1..................................... 6 1.2 1 1:................ 7 1.3

More information

25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3

More information

ʪ¼Á¤Î¥È¥Ý¥í¥¸¥«¥ë¸½¾Ý (2016ǯ¥Î¡¼¥Ù¥ë¾Þ¤Ë´ØÏ¢¤·¤Æ)

ʪ¼Á¤Î¥È¥Ý¥í¥¸¥«¥ë¸½¾Ý  (2016ǯ¥Î¡¼¥Ù¥ë¾Þ¤Ë´ØÏ¢¤·¤Æ) (2016 ) Dept. of Phys., Kyushu Univ. 2017 8 10 1 / 59 2016 Figure: D.J.Thouless F D.M.Haldane J.M.Kosterlitz TOPOLOGICAL PHASE TRANSITIONS AND TOPOLOGICAL PHASES OF MATTER 2 / 59 ( ) ( ) (Dirac, t Hooft-Polyakov)

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

(τ τ ) τ, σ ( ) w = τ iσ, w = τ + iσ (w ) w, w ( ) τ, σ τ = (w + w), σ = i (w w) w, w w = τ w τ + σ w σ = τ + i σ w = τ w τ + σ w σ = τ i σ g ab w, w

(τ τ ) τ, σ ( ) w = τ iσ, w = τ + iσ (w ) w, w ( ) τ, σ τ = (w + w), σ = i (w w) w, w w = τ w τ + σ w σ = τ + i σ w = τ w τ + σ w σ = τ i σ g ab w, w S = 4π dτ dσ gg ij i X µ j X ν η µν η µν g ij g ij = g ij = ( 0 0 ) τ, σ (+, +) τ τ = iτ ds ds = dτ + dσ ds = dτ + dσ δ ij ( ) a =, a = τ b = σ g ij δ ab g g ( +, +,... ) S = 4π S = 4π ( i) = i 4π dτ dσ

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i 1. 1 1.1 1.1.1 1.1.1.1 v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) R ij R ik = δ jk (4) δ ij Kronecker δ ij = { 1 (i = j) 0 (i j) (5) 1 1.1. v1.1 2011/04/10 1. 1 2 v i = R ij v j (6) [

More information

第86回日本感染症学会総会学術集会後抄録(I)

第86回日本感染症学会総会学術集会後抄録(I) κ κ κ κ κ κ μ μ β β β γ α α β β γ α β α α α γ α β β γ μ β β μ μ α ββ β β β β β β β β β β β β β β β β β β γ β μ μ μ μμ μ μ μ μ β β μ μ μ μ μ μ μ μ μ μ μ μ μ μ β

More information

量子力学3-2013

量子力学3-2013 ( 3 ) 5 8 5 03 Email: hatsugai.yasuhiro.ge@u.tsukuba.ac.jp 3 5.............................. 5........................ 5........................ 6.............................. 8.......................

More information

Macdonald, ,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdona

Macdonald, ,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdona Macdonald, 2015.9.1 9.2.,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdonald,, q., Heckman Opdam q,, Macdonald., 1 ,,. Macdonald,

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

( ) ) AGD 2) 7) 1

( ) ) AGD 2) 7) 1 ( 9 5 6 ) ) AGD ) 7) S. ψ (r, t) ψ(r, t) (r, t) Ĥ ψ(r, t) = e iĥt/ħ ψ(r, )e iĥt/ħ ˆn(r, t) = ψ (r, t)ψ(r, t) () : ψ(r, t)ψ (r, t) ψ (r, t)ψ(r, t) = δ(r r ) () ψ(r, t)ψ(r, t) ψ(r, t)ψ(r, t) = (3) ψ (r,

More information

eto-vol1.dvi

eto-vol1.dvi ( 1) 1 ( [1] ) [] ( ) (AC) [3] [4, 5, 6] 3 (i) AC (ii) (iii) 3 AC [3, 7] [4, 5, 6] 1.1 ( e; e>0) Ze r v [ 1(a)] v [ 1(a )] B = μ 0 4π Zer v r 3 = μ 0 4π 1 Ze l m r 3, μ 0 l = mr v ( l s ) s μ s = μ B s

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

D-brane K 1, 2 ( ) 1 K D-brane K K D-brane Witten [1] D-brane K K K K D-brane D-brane K RR BPS D-brane

D-brane K 1, 2   ( ) 1 K D-brane K K D-brane Witten [1] D-brane K K K K D-brane D-brane K RR BPS D-brane D-brane K 1, 2 E-mail: sugimoto@yukawa.kyoto-u.ac.jp (2004 12 16 ) 1 K D-brane K K D-brane Witten [1] D-brane K K K K D-brane D-brane K RR BPS D-brane D-brane RR D-brane K D-brane K D-brane K K [2, 3]

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

2 4 202 9 202 9 6 3................................................... 3.2................................................ 4.3......................................... 6.4.......................................

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin 2 2.1 F (t) 2.1.1 mẍ + kx = F (t). m ẍ + ω 2 x = F (t)/m ω = k/m. 1 : (ẋ, x) x = A sin ωt, ẋ = Aω cos ωt 1 2-1 x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ

More information

Z: Q: R: C: 3. Green Cauchy

Z: Q: R: C: 3. Green Cauchy 7 Z: Q: R: C: 3. Green.............................. 3.............................. 5.3................................. 6.4 Cauchy..................... 6.5 Taylor..........................6...............................

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

( )

( ) 7..-8..8.......................................................................... 4.................................... 3...................................... 3..3.................................. 4.3....................................

More information

Mathematical Logic I 12 Contents I Zorn

Mathematical Logic I 12 Contents I Zorn Mathematical Logic I 12 Contents I 2 1 3 1.1............................. 3 1.2.......................... 5 1.3 Zorn.................. 5 2 6 2.1.............................. 6 2.2..............................

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 3 5 5 5 3 3 7 5 33 5 33 9 5 8 > e > f U f U u u > u ue u e u ue u ue u e u e u u e u u e u N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 > A A > A E A f A A f A [ ] f A A e > > A e[ ] > f A E A < < f ; >

More information

1/2 ( ) 1 * 1 2/3 *2 up charm top -1/3 down strange bottom 6 (ν e, ν µ, ν τ ) -1 (e) (µ) (τ) 6 ( 2 ) 6 6 I II III u d ν e e c s ν µ µ t b ν τ τ (2a) (

1/2 ( ) 1 * 1 2/3 *2 up charm top -1/3 down strange bottom 6 (ν e, ν µ, ν τ ) -1 (e) (µ) (τ) 6 ( 2 ) 6 6 I II III u d ν e e c s ν µ µ t b ν τ τ (2a) ( August 26, 2005 1 1 1.1...................................... 1 1.2......................... 4 1.3....................... 5 1.4.............. 7 1.5.................... 8 1.6 GIM..........................

More information

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq 49 2 I II 2.1 3 e e = 1.602 10 19 A s (2.1 50 2 I SI MKSA 2.1.1 r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = 3 10 8 m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq F = k r

More information

数学の基礎訓練I

数学の基礎訓練I I 9 6 13 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 3 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1)

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1) φ 4 Minimal subtraction scheme 2-loop ε 28 University of Tokyo Atsuo Kuniba version 2/Apr/28 Formulas Γ n + ɛ = n n! ɛ + ψn + + Oɛ n =,, 2, ψn + = + 2 + + γ, 2 n ψ = γ =.5772... Euler const, log + ax x

More information

I. (CREMONA ) : Cremona [C],., modular form f E f. 1., modular X H 1 (X, Q). modular symbol M-symbol, ( ) modular symbol., notation. H = { z = x

I. (CREMONA ) : Cremona [C],., modular form f E f. 1., modular X H 1 (X, Q). modular symbol M-symbol, ( ) modular symbol., notation. H = { z = x I. (CREMONA ) : Cremona [C],., modular form f E f. 1., modular X H 1 (X, Q). modular symbol M-symbol, ( ). 1.1. modular symbol., notation. H = z = x iy C y > 0, cusp H = H Q., Γ = PSL 2 (Z), G Γ [Γ : G]

More information

I

I I 6 4 10 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

A

A A 2563 15 4 21 1 3 1.1................................................ 3 1.2............................................. 3 2 3 2.1......................................... 3 2.2............................................

More information

, 1.,,,.,., (Lin, 1955).,.,.,.,. f, 2,. main.tex 2011/08/13( )

, 1.,,,.,., (Lin, 1955).,.,.,.,. f, 2,. main.tex 2011/08/13( ) 81 4 2 4.1, 1.,,,.,., (Lin, 1955).,.,.,.,. f, 2,. 82 4.2. ζ t + V (ζ + βy) = 0 (4.2.1), V = 0 (4.2.2). (4.2.1), (3.3.66) R 1 Φ / Z, Γ., F 1 ( 3.2 ). 7,., ( )., (4.2.1) 500 hpa., 500 hpa (4.2.1) 1949,.,

More information

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n 003...............................3 Debye................. 3.4................ 3 3 3 3. Larmor Cyclotron... 3 3................ 4 3.3.......... 4 3.3............ 4 3.3...... 4 3.3.3............ 5 3.4.........

More information

SO(2)

SO(2) TOP URL http://amonphys.web.fc2.com/ 1 12 3 12.1.................................. 3 12.2.......................... 4 12.3............................. 5 12.4 SO(2).................................. 6

More information

i

i i 3 4 4 7 5 6 3 ( ).. () 3 () (3) (4) /. 3. 4/3 7. /e 8. a > a, a = /, > a >. () a >, a =, > a > () a > b, a = b, a < b. c c n a n + b n + c n 3c n..... () /3 () + (3) / (4) /4 (5) m > n, a b >, m > n,

More information

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + 2.6 2.6.1 ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.121) Z ω ω j γ j f j

More information