untitled

Size: px
Start display at page:

Download "untitled"

Transcription

1 Abstract Black Hole Black Hole Λ 1

2 1 Introduction Prelude : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : History : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 7 2 Black Hole Schwarzschild : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Kerr : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Kerr Black Hole : : : : : : : : : : : : : : : : : : : Schawarzschild : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Black Hole : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Λ : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : de Sitter : : : : : : : : : : : : : : : : : : : : : Rindler : : : : : : : : : : : : : : : : : : : : : dynamics : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Einstein-Hilbert : : : : : : : : : : : : : : : : : : : : : : : : : : 33 2

3 5 GUP Paradox : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : GUP : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Black Hole : : : : : : : : : : : : : : : : : : : : : : : : : : : A 43 A.1 GUP : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

4 1 Introduction 1.1 Prelude Black Hole Black Hole Black Hole Black Hole Black Hole Black Hole Black Hole Black Hole Washington James M Bardeen Medon Brandon Carter S. W. Hawking [1] Black Hole Black Hole Black Hole 4

5 1 Introduction Planck h = 1: [ kgm 2 =s] [m] Black Hole Black Hole Black Hole Bekenstein Black Hole 4 Black Hole 1.2 History Penrose Kerr Black Hole Penrose Floyd Black Hole [2; 3] Christodulou Kerr Black Hole Black Hole [4; 5; 6] Black Hole Penrose Floyd Kerr Black Hole Kerr-Newman Black Hole Hawking Black Hole [7] Black Hole Hawking Black Hole Black Hole Black Hole Black Hole Black Hole Greif [8] Black Hole Black Hole 5

6 1 Introduction Carter Black Hole Kerr Black Hole [9] Black Hole argument 1970 Bekenstein Black Hole Black Hole [10] Black Hole Bekenstein 10 Black Hole 10 7 Black Hole [m 2 ] π Black Hole [m 2 ] 1 3 Black Hole 1 Black Hole 1.47 [ km ] 4.41 [ km ] π 4πr 2 g = 9:8 108 [m 2 ] 1 Black Hole Bekenstein 3 Black Hole 10 6 [K] Black Hole t Hoot Black Hole brick wall [11] brick wall cutoff Black Hole Black Hole 6

7 1 Introduction R.J.E.Clausius τρoπ η T Q S = Q T S [12] Black Hole A B Q=T B A S B S A Black Hole Black Hole Hawkin Black Hole Black Hole 1 2 S 1 S 2 S = S 1 + S 2 Black Hole Black Hole Black Hole Black Hole S U Black Hole Black Hole Black Hole Hawking 0 J 2 =M 4 + Q 2 =M 2 = 1 0 7

8 1 Introduction Black Hole Bekenstein Black Hole Black Hole Black Hole Black Hole Black Hole Bekenstein-Hawking 2 Black Hole Black Hole GUP Generalized Uncertainty Principle 6 8

9 2 Black Hole 2.1 Schwarzschild Black Hole Black Hole Schwarzschild Black Hole Black Hole ε de Broglie λ = hc ε h Planck ( ' 6: [Js]) c ( ' 2: [m/s]) Black Hole de Broglie Schwarzschild r g (= 2GM=c 2 ) ε hc = λ hc = hc2 r g 2GM (2.1) G ( ' 6: [Nm 2 =kg 2 ]) M Black Hole Black Hole (2:1) N = Mc2 ε ο 2GM2 hc N! Black Hole S = k B ln(n!) ' k B (N lnn N) ο 4πk BGM 2 hc (2.2) 9

10 2 Black Hole k B Boltzmann ( ' 1: [J/K]) h Dirac h(= h=2π) Black Hole 2GM h r hc c 2 = Mc =) m pl = G Planck ( ' 10 8 [kg] ) Planck `pl = h r G h m pl c = c 3 Black Hole Planck ( ' [m]) Boltzmann Black Hole 2 2GM 2 A = 4πr g = 4π c 2 (2.3) S = k Bc 3 4G h A (2.4) (c = h = G = k B = 1) S = A Black Hole Black Hole Schwarzschild Black Hole Scharzschild 10

11 2 Black Hole δt r g 2GM = c = c 3 ω E hδω = δe de Broglie δe = h δt = hc3 2GM (2.5) δωδt = 1 Black Hole (2:5) Black Hole T = δe 4πk = hc 3 8πk B GM 1 M (2.6) Hawking [13] Black Hole δ Black Hole Black Hole Kerr-Newman Black Hole Black Hole Black Hole M E = Mc 2 Black Hole (2:6) S =Z d(mc 2 ) T = 8πk BG hc Z MdM = 4πk BGM 2 hc 11

12 2 Black Hole (2:2) 2.2 Kerr Black Hole Schwarzschild Black Hole Black Hole Black Hole Black Hole Kerr Black Hole Kerr Black Hole A =ZZ pgθφ dθdφ (2.7) g θφ Kerr (θ ;φ) Kerr M J ds 2 = 1 r gr Σ ψ c 2 dt 2 + Σ dr2 + Σdθ 2 + ψ! 2car g r sin 2 θ dtdφ Σ r 2 + a 2 + r gra 2 sin 2 θ Σ! sin 2 θdφ 2 r g = 2GM c 2 a = J cm Σ = r 2 + a 2 cos 2 θ = r 2 r g r + a 2 [15] 12

13 2 Black Hole ( cosθ = 0) r =0 g rr = = 0 r 2 r g r + a 2 = 0 (2.8) r = r g 2 ± r rg 2 2 a 2 (2.9) r = r + ((2:9) ) dr = 0 dt = 0 ψ! ds 2 =(r a2 cos 2 θ )dθ 2 + r 2 r gr a 2 sin 2 θ a2 + r a2 cos 2 sin 2 θdφ 2 θ ψ! =(r a2 cos 2 θ )dθ 2 + r g r r gr + a 2 sin 2 θ + + r a2 cos 2 sin 2 θdφ 2 θ =(r a2 cos 2 θ )dθ 2 rg r r gr + a 2 r a2 cos 2 sin 2 θdφ 2 θ r =(r a2 cos 2 θ )dθ r g r + a2 + r a2 cos 2 sin 2 θdφ 2 θ =(r a2 cos 2 θ )dθ 2 + r 2 +r 2 g r a2 cos 2 θ sin2 θdφ (2:8) (2:7) A = ZZ 0 s 1 2a 2 r g r + sinθdθdφ = 4πr g r + = 2πrg + 1 A (2.10) r g Kerr Black Hole J = 0 a = 0 (2:10) A = 4πr 2 g 13

14 2 Black Hole (2:3) Black Hole Schwarzschild Black Hole Kerr Black Hole Black Hole Black Hole d(mc 2 )=TdS+ ΩdJ (2.11) [15] T Kerr Black Hole Ω Kerr Black Hole (2:10) 0 s A = 2πr + 1 2a r g 1 2 A dm dj da (2:4) S = kb c 3 4G h A (2:11) T = Ω 4πJ = MA 4 hg c 6 A 2 c 3 k B MA 2 32πG 2 2πJ2 J = 0 T = hc 3 8πk B GM (2:6) Hawking 14

15 3 3.1 Schawarzschild Black Hole [17; 18; 20] Black Hole Black Hole M r g = 2GM=c 2 0 E E ' pc ' hc 2 x ' k BT (3.1) E ' pc x p ' h=2 E ' k B T x ' c 1 r g T (3:1) T = c 1 = 2π hc hc 3 2c 1 k B ( 2GM ' (3.2) c 2 ) 4c 1 GMk B T = hc 3 8πGMk B (= T BH ) (3.3) (2:6) Hawking [13] S U = Mc 2 (3:3) T S = Z ds =Z du T = Z 8πGMkB c 2 dm hc 3 = 4πGM2 k B hc 15

16 3 Black Hole A = 4πr 2 g S k B = Ac3 4G h = A 4`2pl ' M M fi 2 (3.4) 1=4 M fi Black Hole Boltzmann S = k B logw W Black Hole N S=k B ο N ο (M=M fi ) Black Hole (3:4) S A M T ε = ãt 4 V = Mc 2 =ε s = 4ãT 3 =3 S = sv = 4Mc 2 =3T (3:2) A S c 1 A 1 c 1 A = = k B 3π `2pl 4 3π =4 `2pl (3.5) c 1 = 3π =4 S=k B = A=(4`2pl ) Black Hole T T Black Hole [19] Black Hole Black Hole Black Hole T Hawking [13] V = Mc 2 =ε(= V BH ) Black Hole V? ο 4πrg 3 =3 16

17 3 V BH V = V 4? 3 πr3 g = 15 (3πG) 4 M 5 π 2 hc π 2GM c 2 = 45 4π 3 G hc (3π) 4 M2 2 3 = M 2 π 32 m pl M fl m pl V BH fl V? Black Hole V = V BH Black Hole M(r) (r;r) (1 2GM(r)=rc 2 ) 1 S = sv S S = 4Mc 2 =3T T M 1 S A L( M) T 1=L s T 3 1=L 3 S sv L 2 V ο L GM 2 =r ' εv =3 M ' εv =c 2 r ' r g r M T (= T? ) r ' (3Mc 2 =4πε) 1=3 T? 1 k B T? 45 m pl c 2 ' 2 mpl 1 2 (3.6) 32π M ã = kb 4 = h3 c 3 T? M 1=2 S = 4Mc 2 =3T? S ' ψ! A M ' π `2pl M fi 17

18 3 (S A) Black Hole Black Hole ο (A=`2pl )1=4 ' (M=M fi ) 1=2 r fl r g r fl r g Black Hole Black Hole ο (A=`pl) 1=4 S ' Mc 2 =T T (3:2) T BH m pl c 2 (m pl =M) (3:6) T? m pl c 2 (m pl =M) 1=2 Mc 2 εv T 4V?? TBH 4 V BH T BH T? (V? =V BH ) 1=4 T? (m pl =M) 1=2 Black Hole T (1=V ) 1=3 (U T 4 V = const) T = V U U V T. U 1 = p T T V c V V p = T T V 4V T (1=V ) 1=4 p c V Black Hole Black Hole Black Hole [17; 18; 20] V? Mc 2 T γ Mc 2 = ãt 4 γ V? V? M 3 T γ M 1=2 T γ V? S γ = 4ãT 3 γ V? =3 S γ M 3=2 S BH =k B = A=4`2pl S BH S γ = π 4 M 2 m pl Tγ = 8 T BH S BH T BH ο S γ T γ ο U (ο Mc 2 ) Black Hole T γ =T BH ( M 1=2 ) Black Hole 18

19 ο ct ρ = 3=32πGt 2 M ' ρ(ct) 3 ο T 2 S ' 4M=3T ο M 3=2 M ' ρ(ct) 3 ' c 3 t =G ct ' GM=c 2 Schwarzschild Black Hole (S M 2 ) Black Hole 3.2 Λ WMAP Λ [21] Λ de Sitter ds 2 Λ3 = 1 r2 c 2 dt Λ r2 1 dr 2 + r 2 dθ 2 + sin 2 θdφ 2 3 [22] `Λ = p 3=Λ `Λ E (3:1) x = c 2`Λ T E ' pc ' hc 2 x ' k BT (3.7) k B T = hc 2c 2`Λ ' hc 2c 2 p 3 p Λ (3.8) c 2 = π Gibbons Hawking 1977 [22] k B T = hcλ 1=2 =p 12π ρ Λ ρ Λ = Λc2 8πG (3.9) (3:9) n Λ n Λ E c 2 = ρ Λ 19

20 3 (3:7) (3:8) (3:9) n ρ Λc 2 Λ = E = Λc4 2c 3`Λ 3c 3 = 8πG hc 4πG V V = 4 3 π `3Λ c 3 h`λ N Λ = n Λ V = 3c 2 4πG c 3 h`λ 4 c 3 π `3Λ 3 = c 2 G h `2Λ `2Λ = c 2 `2pl A = 4π `2Λ S ο N Λ ο c 2 k B 4π c 2 = π Gibbons Hawking S=k B = A=4`2pl [22] A ( N S=k B ο 0:2776)[23] S ' N 2 k B 0:2776 ' 4c `Λ 2 (3.10) S k B ο c 2 π c 2 = π =4 S=k B = A=4`2pl A p ρ p = ρc 2 (3:10) 0:2776 A `2pl A `2pl `pl 20

21 3 T ε γ = ãt 4 ρ Λ ρ Λ ρ Λ = ε ρ γ = Λc2 γ 8πG c 2 c 2 ãt 4 ' Λc2 8πG 15 h 3 c 3 π 2 c 2 hc 2c 2 p 3 p Λ 4 = c3 15 8πG h π 2 Λ p 4 2c c `2Λ = 8π 3 `2pl 3 ' 90 π 3 c4 2 2 `Λ `pl (3.11) `Λ fl `pl ρ Λ fl ρ γ ρ Λ T ρ γ ρ pl (ο [kg=m 3 ]) ρ pl ' m pl `3pl ' h `4pl c [24; 25] ρ Λ ρ Λ ρ pl = (3:11) ρ Λ ρ Λ ' 90 ρ γ ρ pl π 3 c4 2 Λc 2 8πG 3 = h 8π `4pl c `Λ `pl 2 `pl `Λ 2 3 8π 2 `pl ' O(1) `Λ ρ Λ ' p ρ γ ρ pl (3.12) `Λ T ρ γ planck planck ρ pl ρ Λ Dark Energy ρ Λ (3:12) 21

22 3 3.3 κ k B T = hκ =2πc Unruh Minkowski [26] κ `κ = c 2 =κ x = c 3`κ E E ' pc ' hc 2 x ' κ hc 2c 3`κ k B T ' hκ 2c 3 c ' hκ 2c 3 c ' k BT c 3 = π Unruh [27] S 1 = Ak B 4`2pl (3.13) [28] de Sitter [29] T κ M V M = ãt 4 c 2 V κ κ = GM V 2 3 = GãT 4 c 2 V V 2 3 = Gπ2 15 kb 4 T 4 V h 3 c c 2 k B T = hc=(2c 3`κ ); κ = c 2 =`κ c 2 `κ = π c 4 3 G hc c 2 V 1 3 `4κ 22

23 3 V 1 3 = 15 16c4 3 π 2 S = 4ãT 3 V =3 S=V `κ `2pl S k B V π 2 kb 3 T 3 = 3 15 h 3 c V 1 4 π c 4 π = c 3 3`3κ `3κ `2pl = 8 3 c 3 1 `2pl (3:13) c 3 = 3=32 A = V 2 3 S 1 k B A = 4`2pl 1=4`2pl T S=k B A = 1=4`2pl Black Hole (4+n) (3+n) (4+n) Schwarzschild ds 2 = h(r)c 2 dt 2 + h(r) 1 dr 2 + r 2 dω 2 2+n [30] dω 2 2+n (3+n) h(r) 23

24 3 rh h(r) =1 r A n+2 n+1 = 1 16π G(n) M BH 1 n + 2 A n+2 c 2 r A n+2 = n+3 2π 2 Γ( n+3 2 ) [30] n = 0 Γ(3=2)= p π =2 A 2 = 4π G(n) (4+n) (4+n) planck planck planck m pl (n) = `pl(n) = t pl (n) = h n+1 c 1 n G(n) G(n) h c n 1 2+n 1 G(n) h 2+n c 5+n r h MBH H = p π m pl (n) c m pl (n) ψ n+1 n+3 8Γ( 2 ) n + 2! 1 n+1 [31] Black Hole E ο pc ο hc r ο k BT =) k B T ο hc r H (4+n) ε(t ) s(t ) ε(t A n+3 n+2 )= (2π) n+3 k kb T BT (n + 2) Γ(n + 4)ζ (n + 4) ο (k B T ) n+4 hc s(t n )= + 4 n + 3 (n A n+3 + 2) n+2 (2π) 3+n k kb T B Γ(n + 4)ζ (n + 4) ο (k B T ) n+3 hc 24

25 3 V = Mc2 ε Mc 2 k B T kb T hc n+3 S = sv = k B kb T hc n+3 Mc 2 k B T n+3 kb T hc ο Mc2 T ο k Br H Mc 2 ο k n+1 Br H rh rh m plc ο k B hc hc `pl(n) `pl n+2 S (4+n) (3+n) (2+n) n = 0 (3:5) Black Hole de Sitter (4+n) de Sitter ds 2 Λ3 = 1 r2 c 2 dt Λ r2 1 dr 2 + dω 2 n+2 3 `Λ = p 3=Λ T E ο pc ο hc ο k B T Λ `Λ n Λ Λc2 ρ(n) = 8πG(n) n Λ E c 2 ο ρ Λ ο Λc2 8πG(n) 25

26 3 V ο `3+n Λ N Λ = n Λ V ο Λc4 8πG(n) S N Λ S `Λ `3+n hc Λ ο 2+n `Λ `pl 2+n `Λ `pl Rindler κ `κ = c 2 =κ E ο pc ο hc 2`κ ο k B T M V = L 3+n M = ε c 2V ο k BT c 2 kb T hc 3+n L 3+n κ c 2 `κ ο κ = G(n)M L 2+n ο G(n) 3+n k B T kb T 1 4+n L 2+n c 2 L 3+n h ο G(n) hc `κ cl (3.14) L (3:14) L = c3 `3+n κ = G(n) h 2+n `κ `κ S = sv = sl 3+n S 1 2+n L 2+n ο sl ο k B `κ `κ `κ `pl `pl 2+n ο k B 1 `pl 2+n 26

27 3 L `pl S 2+n ο k B (= constant) 27

28 4 4.1 dynamics g µν I = Z d 4 x p gl (g; g) Z d 4 x p gl (g;γ) Γ Christoffel Lagrangian L (q; q) Lagrangian L 0 q; q; 2 q L 0 = L d dt q L q [32] L 0 q q L= q δi 0 = = Z P2 P 1 Z P2 P 1 dt» L L δq + q q δ q δ q L fififi P 2 q P 1» L dt q d dt L q fi fi P 2 δq qδ pfi P 1 L 0 δ p = 0 L δq = 0 Euler-Lagrange L = L (q; q) q L= q q d=dt (q L= q) q L 0 L q q L 0 q L 0 28

29 4 δ p = 0 Lagrangian L 0 [32] I 0 = Z Z I Z I Z d 4 x p gl d 4 x λ " d 4 x λ p gv λ d 4 x λ P λ g µν p # gl λ g µν (4.1) V µ g µν Γ λ µν V µ Lagrangian L Γ Γ Lorentz I I 0 V µ P tensor Γ V µ V µ = c 1 (g)g µν Γ λ νλ + c 2 (g)g ρν Γ µ ρν c 1 (g) c 2 (g) Γ λ νλ = p ν ln g p gg ρν Γ µ ρν = λ p gg λµ P µ p gv µ P µ = c 3 (g)g µν ν p g + c4 (g) p g ν g νµ (4.2) 29

30 4 c 3 c 1 c 2 c 4 c 2 Lagrangian L g µν x 0 g 0µ = 0 P x = constant a i = (0;a) ;a = ln p g 00 Rindler Rindler T =j a j =2π ds 1 = (4.3) da? A pl A pl canonical ensemble Euclid Euclid canonical ensemble (4:1) S = A Euclid [33] S T Rindler Rindler I 0 Rindler I (4:1) Rindler A = Z V d 4 x µ P µ = Z β 0 dt Z V Z d 3 x P = β d 2 x? ˆn P (4.4) V β = 2π =jaj Rindler Euclid β x 1 x Rindler Rindler 30

31 4 ds 2 =(1 + 2al)dt 2 =[1 + 2al (x)]dt 2 dl al dy 2 + dz 2 l al (x) dx2 dy 2 + dz 2 (4.5) l (x) l 0 dl=dx x (t ;l;y;z) Rindler l x (4:5) (t ;l;y;z) (t;x;y;z) (4:2) P µ = 2ac 4 (g) [1 + 2al (x)] l00 l 02 [c 3 (g) 2c 4 (g)] 0 (4:4) Z I = βp µ d 2 x? = βp µ A? = S A? (y z) Euclid (4:3) ds da? = 2aβc 4 (g)+β (c 3 2c 4 )(1 + 2al) l00 l 02 = 1 A pl x l(x) x c 3 (g) =2c 4 (g) aβ = 2π c 4 (g) =1=4πA pl g P µ 31

32 4 P µ = 1 4πA pl 2g µν ν p g + p g ν g νµ = p g g µλ Γ ρ 4πA λρ gτλ Γ µ τλ pl = 1 4πA pl 1 p g ν (gg νµ ) (4:2) P µ = F 1 (g) ν [F 2 (g)g µν ] F 1 F 2 g Rindler (4:5) (4:3) F 1 = 1=p g F2 = g (4:2) P µ c 3 c 4 Rindler Euclid (0;β )=(0;2π =a) P µ a 1=a P µ Lagrangian p gl g ρν g ρν;µ = P µ = 1 4πA pl 2g µν ν p g + p g ν g µν (4.6) p 1 h p gg i gl µν = Γ τ 4πA µργ ρ ντ ΓµνΓ ρ ρτ τ pl (4.7) Langrangian Dirac-Schrodinger Lagrangian Γ 2 -Lagrangian tensor 32

33 4 (4:1) Lagrangian Einstein-Hilbert Lagrangian p p glgrav = gl Cµ R p g x µ = (4.8) 4πA pl Lagrangian Einstein-Hilbert Lagrangian Einstein Lagrangian (4:6) g ρν;µ Lagrangian g (4:7) L G g R (4:8) 4.2 Einstein-Hilbert u i Σ g ij = h ij u i u j h ij Σ Σ vector u j j u i ;u j i u j ;u i j u j a i = u j j u i u j Σ K = j u j trace (4:1) B i a i u i K [34; 35] R = 3 R + K ab K ab Ka a Kb b 2 i Ku i + a i L 2 i Ku i + a i (4.9) L ADM Lagrangian 33

34 4 R = Rg ab u a u b = 2 (G ab R ab )u a u b 2G ab u a u b = 3 R K ab K ab + K a a K b b R abcd u d =( a b u c b a u c ) R abcd u b u d = g ac u b u d R abcd = u b a b u a u b b a u a = a u b b u a a u b ( b u a ) b u b a u a + b u b 2 = i Ku i + a i K ab K ab + K a a Kb b Σ 1 ;Σ 2 S 1 ;S 2 V R=16π (4:9) h ab = g ab +u a u b γ ab = g ab n a n b σ ab = h ab n a n b = g ab + u a u b n a n b Q (4:9) V I EH = 1 16π = 1 16π Z Z V V R p gd 4 x Z p Σ2 L gd 4 x K p hd 3 x 1 Σ 1 8π Z S2 S 1 ai n i p σd 2 xndt (4.10) g 00 = N 2 K = 0 β S 1 N a i n i κ βκ = 2π 34

35 4 κ 8π Z β 0 Z dt d 2 x p σ = 1 4 A A Euclid βe E ADM Hamiltonian I Euclid EH 1 = A βe = S βe 4 Euclid β Euclid Hamiltonian Σ S Q K ab ;Θ ab ;q ab Einstein-Hilbert trace Θ ab = q ab + u a u b ni a i + 2σ i (u a u b )n j K ij Θ = q n i a i ;Θ Θ a a ;q qa a (4.11) (4:10) a i n i (4:11) I EH + 1 8π = 1 16π Z Σ2 Z V Σ 1 K p hd 3 x 1 8π p L gd 4 x 1 8π Z S2 S 1 Z S2 S 1 Θ p σd 2 xndt q p σd 2 xndt ADM Lagrangian L tensor 3 R 35

36 4 Einstein-Hilbert (4:10) a i n i Lagrangian 3 R q Θ q Einstein-Hilbert 36

37 5 GUP 5.1 Paradox Black Hole Black Hole Black Hole Hawking Black Hole Black Hole 3.1 Hawking Black Hole Hawking 5.2 GUP GUP Generalized Uncertainty Principle p x h p + `2pl p h (5.1) [36] String Theory Heisenberg p p G p=c 3 M x E = pc x! x + x 37

38 5 GUP x = 2G M c 2 = 2G( pc) c 4 x h 2G p p + c 3 ο h p + `2pl p h (5.2) 5.3 Black Hole Black Hole Schartzschild p ο h h x = = hc2 r g 2GM BH (5:1) p= h GUP 2 s 3 p h ο x 4`2pl 41 ± 1 5 2`2pl ( x) 2 (5.3) (5:3) Black Hole T GUP ο pc 4πk B ο M BHc 2 4πk B 2 41 ± s 1 mpl M BH x ο r g Hawking 38

39 5 GUP Black Hole Planck Schwartzschild 2`pl Black Hole Planck S GUP οz d(mc 2 ) T GUP οz 4πkB M BH c s 1 mpl M BH dm BH = 4πk B Z MBH m pl d MBH m pl 2 2 MBH = 2πk B + 2πk B 4 M BH m pl m pl Z s 2 MBH + 4πk B 1d m pl s MBH 2 m pl MBH m pl fi fi 1 lnfi M BH m pl + s MBH 2 m pl 3 fi fi 1fi5 A(= 16πG 2 M 2 BH =c4 ) s S GUP ο A k B c 2 A k B c 2 8 G h G h 2 1 mpl M BH 2 2 s fi fi 2πk B lnfi M BH m pl mpl M BH fi fi fi Black Hole Planck S GUP ο A k B c 2 8 G h Black Hole 8 1 Black Hole Planck Black Hole Planck 1 Black 39

40 5 GUP Hole Hawking Planck Dark Matter 40

41 6 Black Hole Λ Λ ρ Λ = 3Λ=(8πG) ρ Λ = p ρ γ ρ pl (4+n) 3.1 Black Hole Black Hole Black Hole Black Hole Black Hole Black Hole S A 3=4 black Hole Black Hole Λ 2 Black Hole 3.1 Black Hole T 41

42 6 Black Hole 2 T Black Hole tensor Einstein Lagrangian Black Hole Black Hole Black Hole GUP GUP Planck Hawking Hawking Planck Black Hole Wald Black Hole [37] Page Hawking Hawking [38] Kiefer[39] Ashtekar[40] 42

43 A A.1 GUP 5 GUP (5:1) Heisenberg x p h 2 (5:1) x h 2 p + `2pl p h p= h 2 s p h ο x `2pl 5 T GUP ο M BHc 2 4πk B 2 41 s `pl x (A.1) (A.2) mpl M BH (A.3) 5 Black Hole Planck 2 1 Planck 5 2 MBH S GUP ο 8πk B m pl +8πk B 2 4 M BH m pl s MBH m pl ln fi fifi M BH m pl + s MBH 2 m pl 3 1 fi fi fi5 4 A(= 16πG 2 M 2 BH =c4 ) Black Hole Planck S GUP ο A (1 + ln2) 8 43

44 A Black Hole Black Hole 44

45 [1] the Latest Theoritical Cosmology by Hawking. [2] R. Penrose, Riv. Nuovo. Cimento 1(1969)252. [3] R. Penrose and R.M. Floyd, Nature 229(1971)177. [4] D. Christodoulou, Phys. Rev. Letters 25 (1970) 177. [5] D. Christodoulou, Ph.D. thesis, Princeton University, 1971(unpublished). [6] D. Christodoulou and R. Ruffini, Phys. Rev. D4 (1971) [7] S. W. Hawking, Phys. Rev. Letters 26 (1971) 1344; contribution to Black Holes, edited by B. DeWitt and C. DeWitt ( Gordon and Breach, New York, 1973). [8] J. M. Greif, Junior thesis, Prenceton University(1969). [9] B. Carter, Nature 238 (1972) 71. [10] J. D. Bekenstein, Ph.D. thesis, Princeton University, 1972(unpublished). [11] G. t Hoot, On the Quantum Structure of a Black Hole, Nucl. Phys. B256 (1985) 727. [12],,, [13] S. W. Hawking, Particle creation by black hole, Commun. Math. Phys. 43 (1975) 199. [14] John Archibald Wheeler[ ] [ ],, Scientific American library. 10. [15],, [16] N. D. Birrell and P. C. W. Davies, Quantum Fields in Curred Space, Cambridge University Press (1982). [17] S. W. Hawking, Mon. Not. R. astr. Soc. 152 (1971)

46 A [18] B. J. Carr and S. W. Hawking, Mon. Not. R. astr. Soc. 168 (1974) 399. [19] J. D. Bekenstein,Black Holes and Entropy, Phys. Rev. D7 (1979) [20] H. K. Lee, Phys. Rev. D66 (2002) [21] D. N. Spergel et al., Ap. J. S. 148 (2003) 175. [22] G. W. Gibbons and S. W. Haking,Cosmological event horizons, thermodynamics, and particle creation, Phys. Rev. D15 (1977) [23] L. D. Landau and E. M. Lifshitz, Statistical Physics, Reed Edu. and Pro. Pub.Ltd. Oxford (1980). [24] S. Weinberg, Rev. Mod. Phys. 61 (1989) 1. [25] T. Padmanabhan, Classical and Quantum Thermodynamics of horizons in spherically symmetric spacetimes, Class. Quant. Grav. 19 (2002) [26] G. E. A. Matsas and D. A. T. Vanzella,The Fulling-Davies-Unruh Effect is Mandatory: The Proton s Testimony, Int. J. Mod. Phys. D11(2002) [27] W. G. Unruh, Notes on black hole evaporation, Phys. Rev. D14 (1976) 870. [28] T. Padmanabhan, Gravity from Space-time Thermodynamics, Astrophys. Space Sci. 285 (2003) 407. [29] T. Jacobson and R. Parentani, Horizon Entropy, Found. Phys. 33 (2003) [30] R.C. Myers and M.J. Perry, Black Holes in Higher Dimensional Space-Times, Ann. Phys. 172 (1986) [31] C.M. Harris and P. Kanti, Hawking Radiation from a (4+n)-dimensional Black Hole: Exact Results for the Schwarzschild Phase, hep-ph/ [32] D. Lynden-Bell and T. Padmanabhan, (1994), unpublished T. Padmanabhan, Cosmology and Astrophysics - through problems, (Cambridge university press, 1996). [33] T. Padmanabhan, Thermodynamics and/or Horizons: A comparison of Schwarzshild, Rindler and de Sitter spacetimes, Mod. Phys. Lett. A17 (2002) [34] C. W. Misner, K. S. Throne and J. A. Wheeler, Gravitation, Freeman and co.,

47 A [35] J. W. York, Between Quantum and Cosmos,1987 eds W. H. Zurek et al (Princeton University Press, Princeton, 1998). [36] Pisin Chen, Generalized Uncertainty Principle and Dark Matter, astroph/ [37] R. M. Wald, The Thermodynamics of Black Hole, Living Rev. Rel. 4(2001), 6. [38] Don N. Page, Hawking Radiation and Black Hole Thermodynamics, hepth/ [39] C. Kiffer, Quantum Aspects of Black Holes, astro-ph/ [40] A. Ashtekar, Gravity and the Quantum, gr-qc/

橡超弦理論はブラックホールの謎を解けるか?

橡超弦理論はブラックホールの謎を解けるか? 1999 3 (Can String Theory Solve the Puzzles of Black Holes?) 305-0801 1-1 makoto.natsuume@kek.jp D-brane 1 Schwarzschild 60 80 2 [1] 1 1 1 2 2 [2] 25 2.2 2 2.1 [7,8] Schwarzschild 2GM/c 2 Schwarzschild

More information

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x 7 7.1 7.1.1 Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x 3 )=(x 0, x )=(ct, x ) (7.3) E/c ct K = E mc 2 (7.4)

More information

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. tomocci 18 7 5...,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. M F (M), X(F (M)).. T M p e i = e µ i µ. a a = a i

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc2.com/ 1 6 3 6.1................................ 3 6.2.............................. 4 6.3................................ 5 6.4.......................... 6 6.5......................

More information

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1 QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1 (vierbein) QCD QCD 1 1: QCD QCD Γ ρ µν A µ R σ µνρ F µν g µν A µ Lagrangian gr TrFµν F µν No. Yes. Yes. No. No! Yes! [1] Nash & Sen [2] Riemann

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

A

A A04-164 2008 2 13 1 4 1.1.......................................... 4 1.2..................................... 4 1.3..................................... 4 1.4..................................... 5 2

More information

IA

IA IA 31 4 11 1 1 4 1.1 Planck.............................. 4 1. Bohr.................................... 5 1.3..................................... 6 8.1................................... 8....................................

More information

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat / Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiation and the Continuing Failure of the Bilinear Formalism,

More information

K E N Z U 2012 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.2................................... 4 1.2.1..................................... 4 1.2.2.................................... 5................................

More information

Bose-Einstein Hawking Hawking Hawking Hawking nk Hawking Bose-Einstein Hawking 1 Bekenstein[1] Hawking 1974 [2,

Bose-Einstein Hawking   Hawking Hawking Hawking nk Hawking Bose-Einstein Hawking 1 Bekenstein[1] Hawking 1974 [2, Bose-Einstein Hawking E-mail: moinai@yukawa.kyoto-u.ac.jp Hawking Hawking Hawking nk Hawking Bose-Einstein Hawking 1 Bekenstein[1] Hawking 1974 [2, 3] Hawking Hawking 6nK Hawking Hawking 3K Hawking Hawking

More information

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) 4 4 ) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) a b a b = 6i j 4 b c b c 9) a b = 4 a b) c = 7

More information

(Maldacena) ads/cft

(Maldacena) ads/cft SGC - 90 100 1998 (Maldacena) ads/cft 100 2011 4 1 2012 3 1) μ, ν 2) i i, j, k 3) a h a,,h 1.6 4) μ μ = / x μ 5) μ 6) g μν (, +, +, +, ) g μν 7) Γ α μν Γμν α = 1 2 gαβ ( μ g βν + ν g βμ β g μν ) 8) R μναβ

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

ADM-Hamiltonian Cheeger-Gromov 3. Penrose

ADM-Hamiltonian Cheeger-Gromov 3. Penrose ADM-Hamiltonian 1. 2. Cheeger-Gromov 3. Penrose 0. ADM-Hamiltonian (M 4, h) Einstein-Hilbert M 4 R h hdx L h = R h h δl h = 0 (Ric h ) αβ 1 2 R hg αβ = 0 (Σ 3, g ij ) (M 4, h ij ) g ij, k ij Σ π ij = g(k

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc2.com/ 1 30 3 30.1.............. 3 30.2........................... 4 30.3...................... 5 30.4........................ 6 30.5.................................. 8 30.6...............................

More information

a L = Ψ éiγ c pa qaa mc ù êë ( - )- úû Ψ 1 Ψ 4 γ a a 0, 1,, 3 {γ a, γ b } η ab æi O ö æo ö β, σ = ço I α = è - ø çèσ O ø γ 0 x iβ γ i x iβα i

a L = Ψ éiγ c pa qaa mc ù êë ( - )- úû Ψ 1 Ψ 4 γ a a 0, 1,, 3 {γ a, γ b } η ab æi O ö æo ö β, σ = ço I α = è - ø çèσ O ø γ 0 x iβ γ i x iβα i 解説 4 matsuo.mamoru jaea.go.jp 4 eizi imr.tohoku.ac.jp 4 maekawa.sadamichi jaea.go.jp i ii iii i Gd Tb Dy g khz Pt ii iii Keywords vierbein 3 dreibein 4 vielbein torsion JST-ERATO 1 017 1. 1..1 a L = Ψ

More information

QMI_10.dvi

QMI_10.dvi ... black body radiation black body black body radiation Gustav Kirchhoff 859 895 W. Wien O.R. Lummer cavity radiation ν ν +dν f T (ν) f T (ν)dν = 8πν2 c 3 kt dν (Rayleigh Jeans) (.) f T (ν) spectral energy

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

CKY CKY CKY 4 Kerr CKY

CKY CKY CKY 4 Kerr CKY ( ) 1. (I) Hidden Symmetry and Exact Solutions in Einstein Gravity Houri-Y.Y: Progress Supplement (2011) (II) Generalized Hidden Symmetries and Kerr-Sen Black Hole Houri-Kubiznak-Warnick-Y.Y: JHEP (2010)

More information

Gmech08.dvi

Gmech08.dvi 145 13 13.1 13.1.1 0 m mg S 13.1 F 13.1 F /m S F F 13.1 F mg S F F mg 13.1: m d2 r 2 = F + F = 0 (13.1) 146 13 F = F (13.2) S S S S S P r S P r r = r 0 + r (13.3) r 0 S S m d2 r 2 = F (13.4) (13.3) d 2

More information

PDF

PDF 1 1 1 1-1 1 1-9 1-3 1-1 13-17 -3 6-4 6 3 3-1 35 3-37 3-3 38 4 4-1 39 4- Fe C TEM 41 4-3 C TEM 44 4-4 Fe TEM 46 4-5 5 4-6 5 5 51 6 5 1 1-1 1991 1,1 multiwall nanotube 1993 singlewall nanotube ( 1,) sp 7.4eV

More information

ssastro2016_shiromizu

ssastro2016_shiromizu 26 th July 2016 / 1991(M1)-1995(D3), 2005( ) 26 th July 2016 / 1. 2. 3. 4. . ( ) 1960-70 1963 Kerr 1965 BH Penrose 1967 Hawking BH Israel 1971 (Carter)-75(Robinson) BH 1972 BH theorem(,, ) Hawk 1975 Hawking

More information

ʪ¼Á¤Î¥È¥Ý¥í¥¸¥«¥ë¸½¾Ý (2016ǯ¥Î¡¼¥Ù¥ë¾Þ¤Ë´ØÏ¢¤·¤Æ)

ʪ¼Á¤Î¥È¥Ý¥í¥¸¥«¥ë¸½¾Ý  (2016ǯ¥Î¡¼¥Ù¥ë¾Þ¤Ë´ØÏ¢¤·¤Æ) (2016 ) Dept. of Phys., Kyushu Univ. 2017 8 10 1 / 59 2016 Figure: D.J.Thouless F D.M.Haldane J.M.Kosterlitz TOPOLOGICAL PHASE TRANSITIONS AND TOPOLOGICAL PHASES OF MATTER 2 / 59 ( ) ( ) (Dirac, t Hooft-Polyakov)

More information

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2 1 6 6.1 (??) (P = ρ rad /3) ρ rad T 4 d(ρv ) + PdV = 0 (6.1) dρ rad ρ rad + 4 da a = 0 (6.2) dt T + da a = 0 T 1 a (6.3) ( ) n ρ m = n (m + 12 ) m v2 = n (m + 32 ) T, P = nt (6.4) (6.1) d [(nm + 32 ] )a

More information

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1 1 I 1.1 ± e = = - =1.602 10 19 C C MKA [m], [Kg] [s] [A] 1C 1A 1 MKA 1C 1C +q q +q q 1 1.1 r 1,2 q 1, q 2 r 12 2 q 1, q 2 2 F 12 = k q 1q 2 r 12 2 (1.1) k 2 k 2 ( r 1 r 2 ) ( r 2 r 1 ) q 1 q 2 (q 1 q 2

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d A 2. x F (t) =f sin ωt x(0) = ẋ(0) = 0 ω θ sin θ θ 3! θ3 v = f mω cos ωt x = f mω (t sin ωt) ω t 0 = f ( cos ωt) mω x ma2-2 t ω x f (t mω ω (ωt ) 6 (ωt)3 = f 6m ωt3 2.2 u ( v w) = v ( w u) = w ( u v) ma22-9

More information

arxiv: v1(astro-ph.co)

arxiv: v1(astro-ph.co) arxiv:1311.0281v1(astro-ph.co) R µν 1 2 Rg µν + Λg µν = 8πG c 4 T µν Λ f(r) R f(r) Galileon φ(t) Massive Gravity etc... Action S = d 4 x g (L GG + L m ) L GG = K(φ,X) G 3 (φ,x)φ + G 4 (φ,x)r + G 4X (φ)

More information

The Physics of Atmospheres CAPTER :

The Physics of Atmospheres CAPTER : The Physics of Atmospheres CAPTER 4 1 4 2 41 : 2 42 14 43 17 44 25 45 27 46 3 47 31 48 32 49 34 41 35 411 36 maintex 23/11/28 The Physics of Atmospheres CAPTER 4 2 4 41 : 2 1 σ 2 (21) (22) k I = I exp(

More information

Einstein ( ) YITP

Einstein ( ) YITP Einstein ( ) 2013 8 21 YITP 0. massivegravity Massive spin 2 field theory Fierz-Pauli (FP ) Kinetic term L (2) EH = 1 2 [ λh µν λ h µν λ h λ h 2 µ h µλ ν h νλ + 2 µ h µλ λ h], (1) Mass term FP L mass =

More information

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji 8 4 2018 6 2018 6 7 1 (Contents) 1. 2 2. (1) 22 3. 31 1. Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji SETO 22 3. Editorial Comments Tadashi

More information

( )

( ) 7..-8..8.......................................................................... 4.................................... 3...................................... 3..3.................................. 4.3....................................

More information

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j = 72 Maxwell. Maxwell e r ( =,,N Maxwell rot E + B t = 0 rot H D t = j dv D = ρ dv B = 0 D = ɛ 0 E H = μ 0 B ρ( r = j( r = N e δ( r r = N e r δ( r r = : 2005 ( 2006.8.22 73 207 ρ t +dv j =0 r m m r = e E(

More information

2016 ǯ¥Î¡¼¥Ù¥ëʪÍý³Ø¾Þ²òÀ⥻¥ß¥Ê¡¼ Kosterlitz-Thouless ž°Ü¤È Haldane ͽÁÛ

2016 ǯ¥Î¡¼¥Ù¥ëʪÍý³Ø¾Þ²òÀ⥻¥ß¥Ê¡¼  Kosterlitz-Thouless ž°Ü¤È Haldane ͽÁÛ 2016 Kosterlitz-Thouless Haldane Dept. of Phys., Kyushu Univ. 2016 11 29 2016 Figure: D.J.Thouless F D.M.Haldane J.M.Kosterlitz TOPOLOGICAL PHASE TRANSITIONS AND TOPOLOGICAL PHASES OF MATTER ( ) ( ) (Dirac,

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

2009 2 26 1 3 1.1.................................................. 3 1.2..................................................... 3 1.3...................................................... 3 1.4.....................................................

More information

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k 63 3 Section 3.1 g 3.1 3.1: : 64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () 3 9.8 m/s 2 3.2 3.2: : a) b) 5 15 4 1 1. 1 3 14. 1 3 kg/m 3 2 3.3 1 3 5.8 1 3 kg/m 3 3 2.65 1 3 kg/m 3 4 6 m 3.1. 65 5

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z I 1 m 2 l k 2 x = 0 x 1 x 1 2 x 2 g x x 2 x 1 m k m 1-1. L x 1, x 2, ẋ 1, ẋ 2 ẋ 1 x = 0 1-2. 2 Q = x 1 + x 2 2 q = x 2 x 1 l L Q, q, Q, q M = 2m µ = m 2 1-3. Q q 1-4. 2 x 2 = h 1 x 1 t = 0 2 1 t x 1 (t)

More information

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq 49 2 I II 2.1 3 e e = 1.602 10 19 A s (2.1 50 2 I SI MKSA 2.1.1 r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = 3 10 8 m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq F = k r

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 1 19 3 19.1................... 3 19.............................. 4 19.3............................... 6 19.4.............................. 8 19.5.............................

More information

,,..,. 1

,,..,. 1 016 9 3 6 0 016 1 0 1 10 1 1 17 1..,,..,. 1 1 c = h = G = ε 0 = 1. 1.1 L L T V 1.1. T, V. d dt L q i L q i = 0 1.. q i t L q i, q i, t L ϕ, ϕ, x µ x µ 1.3. ϕ x µ, L. S, L, L S = Ld 4 x 1.4 = Ld 3 xdt 1.5

More information

Mott散乱によるParity対称性の破れを検証

Mott散乱によるParity対称性の破れを検証 Mott Parity P2 Mott target Mott Parity Parity Γ = 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 t P P ),,, ( 3 2 1 0 1 γ γ γ γ γ γ ν ν µ µ = = Γ 1 : : : Γ P P P P x x P ν ν µ µ vector axial vector ν ν µ µ γ γ Γ ν γ

More information

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K 2 2 T c µ T c 1 1.1 1911 Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 1 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K τ 4.2K σ 58 213 email:takada@issp.u-tokyo.ac.jp 1933 Meissner Ochsenfeld λ = 1 5 cm B = χ B =

More information

“‡”�„³…u…›…b…N…z†[…‰

“‡”�„³…u…›…b…N…z†[…‰ 2009 8 31 / 4 : : Outline 4 G MN T t g x mu... g µν = G MN X M x µ X N x ν X G MN c.f., : X 5, X 6,... g µν : : g µν, A µ : R µν 1 2 Rg µν = 8πGT µν : G MN : R MN 1 2 RG MN = 0 ( ) Kaluza-Klein G MN =

More information

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1)

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1) φ 4 Minimal subtraction scheme 2-loop ε 28 University of Tokyo Atsuo Kuniba version 2/Apr/28 Formulas Γ n + ɛ = n n! ɛ + ψn + + Oɛ n =,, 2, ψn + = + 2 + + γ, 2 n ψ = γ =.5772... Euler const, log + ax x

More information

all.dvi

all.dvi I 1 Density Matrix 1.1 ( (Observable) Ô :ensemble ensemble average) Ô en =Tr ˆρ en Ô ˆρ en Tr  n, n =, 1,, Tr  = n n  n Tr  I w j j ( j =, 1,, ) ˆρ en j w j j ˆρ en = j w j j j Ô en = j w j j Ô j emsemble

More information

sec13.dvi

sec13.dvi 13 13.1 O r F R = m d 2 r dt 2 m r m = F = m r M M d2 R dt 2 = m d 2 r dt 2 = F = F (13.1) F O L = r p = m r ṙ dl dt = m ṙ ṙ + m r r = r (m r ) = r F N. (13.2) N N = R F 13.2 O ˆn ω L O r u u = ω r 1 1:

More information

量子力学A

量子力学A c 1 1 1.1....................................... 1 1............................................ 4 1.3.............................. 6 10.1.................................. 10......................................

More information

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π . 4cm 6 cm 4cm cm 8 cm λ()=a [kg/m] A 4cm A 4cm cm h h Y a G.38h a b () y = h.38h G b h X () S() = π() a,b, h,π V = ρ M = ρv G = M h S() 3 d a,b, h 4 G = 5 h a b a b = 6 ω() s v m θ() m v () θ() ω() dθ()

More information

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb r 1 r 2 r 1 r 2 2 Coulomb Gauss Coulomb 2.1 Coulomb 1 2 r 1 r 2 1 2 F 12 2 1 F 21 F 12 = F 21 = 1 4πε 0 1 2 r 1 r 2 2 r 1 r 2 r 1 r 2 (2.1) Coulomb ε 0 = 107 4πc 2 =8.854 187 817 10 12 C 2 N 1 m 2 (2.2)

More information

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a 1 2 2.1 (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a) L ( ) ) * 2) W Z 1/2 ( - ) d u + e + ν e 1 1 0 0

More information

Aharonov-Bohm(AB) S 0 1/ 2 1/ 2 S t = 1/ 2 1/2 1/2 1/, (12.1) 2 1/2 1/2 *1 AB ( ) 0 e iθ AB S AB = e iθ, AB 0 θ 2π ϕ = e ϕ (ϕ ) ϕ

Aharonov-Bohm(AB) S 0 1/ 2 1/ 2 S t = 1/ 2 1/2 1/2 1/, (12.1) 2 1/2 1/2 *1 AB ( ) 0 e iθ AB S AB = e iθ, AB 0 θ 2π ϕ = e ϕ (ϕ ) ϕ 1 13 6 8 3.6.3 - Aharonov-BohmAB) S 1/ 1/ S t = 1/ 1/ 1/ 1/, 1.1) 1/ 1/ *1 AB ) e iθ AB S AB = e iθ, AB θ π ϕ = e ϕ ϕ ) ϕ 1.) S S ) e iθ S w = e iθ 1.3) θ θ AB??) S t = 4 sin θ 1 + e iθ AB e iθ AB + e

More information

( ) ,

( ) , II 2007 4 0. 0 1 0 2 ( ) 0 3 1 2 3 4, - 5 6 7 1 1 1 1 1) 2) 3) 4) ( ) () H 2.79 10 10 He 2.72 10 9 C 1.01 10 7 N 3.13 10 6 O 2.38 10 7 Ne 3.44 10 6 Mg 1.076 10 6 Si 1 10 6 S 5.15 10 5 Ar 1.01 10 5 Fe 9.00

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1) 1 9 v..1 c (216/1/7) Minoru Suzuki 1 1 9.1 9.1.1 T µ 1 (7.18) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1) E E µ = E f(e ) E µ (9.1) µ (9.2) µ 1 e β(e µ) 1 f(e )

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

B 1 B.1.......................... 1 B.1.1................. 1 B.1.2................. 2 B.2........................... 5 B.2.1.......................... 5 B.2.2.................. 6 B.2.3..................

More information

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e 7 -a 7 -a February 4, 2007 1. 2. 3. 4. 1. 2. 3. 1 Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e z

More information

Formation process of regular satellites on the circumplanetary disk Hidetaka Okada Department of Earth Sciences, Undergraduate school of Scie

Formation process of regular satellites on the circumplanetary disk Hidetaka Okada Department of Earth Sciences, Undergraduate school of Scie Formation process of regular satellites on the circumplanetary disk Hidetaka Okada 22060172 Department of Earth Sciences, Undergraduate school of Science, Hokkaido University Planetary and Space Group

More information

BH BH BH BH Typeset by FoilTEX 2

BH BH BH BH Typeset by FoilTEX 2 GR BH BH 2015.10.10 BH at 2015.09.07 NICT 2015.05.26 Typeset by FoilTEX 1 BH BH BH BH Typeset by FoilTEX 2 1. BH 1.1 1 Typeset by FoilTEX 3 1.2 2 A B A B t = 0 A: m a [kg] B: m b [kg] t = t f star free

More information

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x Compton Scattering Beaming exp [i k x ωt] k λ k π/λ ω πν k ω/c k x ωt ω k α c, k k x ωt η αβ k α x β diag + ++ x β ct, x O O x O O v k α k α β, γ k γ k βk, k γ k + βk k γ k k, k γ k + βk 3 k k 4 k 3 k

More information

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds 127 3 II 3.1 3.1.1 Φ(t) ϕ em = dφ dt (3.1) B( r) Φ = { B( r) n( r)}ds (3.2) S S n( r) Φ 128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds

More information

l µ l µ l 0 (1, x r, y r, z r ) 1 r (1, x r, y r, z r ) l µ g µν η µν 2ml µ l ν 1 2m r 2mx r 2 2my r 2 2mz r 2 2mx r 2 1 2mx2 2mxy 2mxz 2my r 2mz 2 r

l µ l µ l 0 (1, x r, y r, z r ) 1 r (1, x r, y r, z r ) l µ g µν η µν 2ml µ l ν 1 2m r 2mx r 2 2my r 2 2mz r 2 2mx r 2 1 2mx2 2mxy 2mxz 2my r 2mz 2 r 2 1 (7a)(7b) λ i( w w ) + [ w + w ] 1 + w w l 2 0 Re(γ) α (7a)(7b) 2 γ 0, ( w) 2 1, w 1 γ (1) l µ, λ j γ l 2 0 Re(γ) α, λ w + w i( w w ) 1 + w w γ γ 1 w 1 r [x2 + y 2 + z 2 ] 1/2 ( w) 2 x2 + y 2 + z 2

More information

2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP

2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP 1. 1 213 1 6 1 3 1: ( ) 2: 3: SF 1 2 3 1: 3 2 A m 2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP

More information

gr09.dvi

gr09.dvi .1, θ, ϕ d = A, t dt + B, t dtd + C, t d + D, t dθ +in θdϕ.1.1 t { = f1,t t = f,t { D, t = B, t =.1. t A, tdt e φ,t dt, C, td e λ,t d.1.3,t, t d = e φ,t dt + e λ,t d + dθ +in θdϕ.1.4 { = f1,t t = f,t {

More information

[1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin Clifford Spin 10 A 12 B 17 1 Cliffo

[1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin Clifford Spin 10 A 12 B 17 1 Cliffo [1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin + 8 5 Clifford Spin 10 A 12 B 17 1 Clifford Spin D Euclid Clifford Γ µ, µ = 1,, D {Γ µ, Γ ν

More information

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint ( 9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) 2. 2.1 Ĥ ψ n (r) ω n Schrödinger Ĥ ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ + Ĥint (t)] ψ (r, t), (2) Ĥ int (t) = eˆxe cos ωt ˆdE cos ωt, (3)

More information

25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i July 8, 4. H H H int H H H int H int (x)d 3 x Schrödinger Picture Ψ(t) S e iht Ψ H O S Heisenberg Picture Ψ H O H (t) e iht O S e iht Interaction Picture Ψ(t) D e iht Ψ(t) S O D (t) e iht O S e ih t (Dirac

More information

QMI13a.dvi

QMI13a.dvi I (2013 (MAEDA, Atsutaka) 25 10 15 [ I I [] ( ) 0. (a) (b) Plank Compton de Broglie Bohr 1. (a) Einstein- de Broglie (b) (c) 1 (d) 2. Schrödinger (a) Schrödinger (b) Schrödinger (c) (d) 3. (a) (b) (c)

More information

総研大恒星進化概要.dvi

総研大恒星進化概要.dvi The Structure and Evolution of Stars I. Basic Equations. M r r =4πr2 ρ () P r = GM rρ. r 2 (2) r: M r : P and ρ: G: M r Lagrange r = M r 4πr 2 rho ( ) P = GM r M r 4πr. 4 (2 ) s(ρ, P ) s(ρ, P ) r L r T

More information

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz 2 Rutherford 2. Rutherford N. Bohr Rutherford 859 Kirchhoff Bunsen 86 Maxwell Maxwell 885 Balmer λ Balmer λ = 364.56 n 2 n 2 4 Lyman, Paschen 3 nm, n =3, 4, 5, 4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n

More information

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence Hanbury-Brown Twiss (ver. 2.) 25 4 4 1 2 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 4 3 Hanbury-Brown Twiss ( ) 5 3.1............................................

More information

215 11 13 1 2 1.1....................... 2 1.2.................... 2 1.3..................... 2 1.4...................... 3 1.5............... 3 1.6........................... 4 1.7.................. 4

More information

all.dvi

all.dvi 72 9 Hooke,,,. Hooke. 9.1 Hooke 1 Hooke. 1, 1 Hooke. σ, ε, Young. σ ε (9.1), Young. τ γ G τ Gγ (9.2) X 1, X 2. Poisson, Poisson ν. ν ε 22 (9.) ε 11 F F X 2 X 1 9.1: Poisson 9.1. Hooke 7 Young Poisson G

More information

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1)

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1) 23 2 2.1 10 5 6 N/m 2 2.1.1 f x x L dl U 1 du = T ds pdv + fdl (2.1) 24 2 dv = 0 dl ( ) U f = T L p,t ( ) S L p,t (2.2) 2 ( ) ( ) S f = L T p,t p,l (2.3) ( ) U f = L p,t + T ( ) f T p,l (2.4) 1 f e ( U/

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

(5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b)

(5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b) (5) 74 Re, bondar laer (Prandtl) Re z ω z = x (5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b) (5) 76 l V x ) 1/ 1 ( 1 1 1 δ δ = x Re x p V x t V l l (1-1) 1/ 1 δ δ δ δ = x Re p V x t V

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

I ( ) 2019

I ( ) 2019 I ( ) 2019 i 1 I,, III,, 1,,,, III,,,, (1 ) (,,, ), :...,, : NHK... NHK, (YouTube ),!!, manaba http://pen.envr.tsukuba.ac.jp/lec/physics/,, Richard Feynman Lectures on Physics Addison-Wesley,,,, x χ,

More information

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes ) ( 3 7 4 ) 2 2 ) 8 2 954 2) 955 3) 5) J = σe 2 6) 955 7) 9) 955 Statistical-Mechanical Theory of Irreversible Processes 957 ) 3 4 2 A B H (t) = Ae iωt B(t) = B(ω)e iωt B(ω) = [ Φ R (ω) Φ R () ] iω Φ R (t)

More information

液晶の物理1:連続体理論(弾性,粘性)

液晶の物理1:連続体理論(弾性,粘性) The Physics of Liquid Crystals P. G. de Gennes and J. Prost (Oxford University Press, 1993) Liquid crystals are beautiful and mysterious; I am fond of them for both reasons. My hope is that some readers

More information

1 ( ) Einstein, Robertson-Walker metric, R µν R 2 g µν + Λg µν = 8πG c 4 T µν, (1) ( ds 2 = c 2 dt 2 + a(t) 2 dr 2 ) + 1 Kr 2 r2 dω 2, (2) (ȧ ) 2 H 2

1 ( ) Einstein, Robertson-Walker metric, R µν R 2 g µν + Λg µν = 8πG c 4 T µν, (1) ( ds 2 = c 2 dt 2 + a(t) 2 dr 2 ) + 1 Kr 2 r2 dω 2, (2) (ȧ ) 2 H 2 1 ( ) Einstein, Robertson-Walker metric, R µν R 2 g µν + Λg µν = 8πG c 4 T µν, (1) ( ds 2 = c 2 dt 2 + a(t) 2 dr 2 ) + 1 Kr 2 r2 dω 2, (2) (ȧ ) 2 H 2 = 8πG a 3c 2 ρ Kc2 a 2 + Λc2 3 (3), ä a = 4πG Λc2 (ρ

More information

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [ 3 3. 3.. H H = H + V (t), V (t) = gµ B α B e e iωt i t Ψ(t) = [H + V (t)]ψ(t) Φ(t) Ψ(t) = e iht Φ(t) H e iht Φ(t) + ie iht t Φ(t) = [H + V (t)]e iht Φ(t) Φ(t) i t Φ(t) = V H(t)Φ(t), V H (t) = e iht V (t)e

More information

Z: Q: R: C: sin 6 5 ζ a, b

Z: Q: R: C: sin 6 5 ζ a, b Z: Q: R: C: 3 3 7 4 sin 6 5 ζ 9 6 6............................... 6............................... 6.3......................... 4 7 6 8 8 9 3 33 a, b a bc c b a a b 5 3 5 3 5 5 3 a a a a p > p p p, 3,

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B 9 7 A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B x x B } B C y C y + x B y C x C C x C y B = A

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

Chadwick [ 1 ] 1919,, electron number Q kinetic energy [MeV] 8.1: 8.1, 1 internal conversion electron E γ E e =

Chadwick [ 1 ] 1919,, electron number Q kinetic energy [MeV] 8.1: 8.1, 1 internal conversion electron E γ E e = 8 8.1 8.1.1 1 Chadwick [ 1 ] 1919,, electron number Q 0.0 0. 0.4 0.6 0.8 1.0 kinetic energy [MeV] 8.1: 8.1, 1 internal conversion electron E γ E e = E γ φ φ E e X 153 154 8, 3 H 3 He, ( ) 3 H( 1 ) 3 He(

More information

D.dvi

D.dvi 2005 3 3 1 7 1.1... 7 1.2 Brane... 8 1.3 AdS/CFT black hole... 9 1.4... 10 2 11 2.1 Kaluza-Klein... 11 2.1.1 Kazula-Klein 4... 11 2.1.2 Kaluza-Klein... 13 2.2 Brane... 14 2.2.1 Brane 4... 14 2.2.2 Bulk

More information

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) = 1 9 8 1 1 1 ; 1 11 16 C. H. Scholz, The Mechanics of Earthquakes and Faulting 1. 1.1 1.1.1 : - σ = σ t sin πr a λ dσ dr a = E a = π λ σ πr a t cos λ 1 r a/λ 1 cos 1 E: σ t = Eλ πa a λ E/π γ : λ/ 3 γ =

More information

4 2016 3 8 2.,. 2. Arakawa Jacobin., 2 Adams-Bashforth. Re = 80, 90, 100.. h l, h/l, Kármán, h/l 0.28,, h/l.., (2010), 46.2., t = 100 t = 2000 46.2 < Re 46.5. 1 1 4 2 6 2.1............................

More information