untitled

Similar documents
Microsoft PowerPoint - 山形大高野send ppt [互換モード]

吸収分光.PDF

PowerPoint Presentation

Microsoft Word - 学士論文(表紙).doc

160GHz

28 Horizontal angle correction using straight line detection in an equirectangular image

(FBG).7 (OADM)

14 2 5

飽和分光

news

LD

1 Visible spectroscopy for student Spectrometer and optical spectrum phys/ishikawa/class/index.html

untitled

25 Removal of the fricative sounds that occur in the electronic stethoscope

( ) ( )

XFEL/SPring-8

IPSJ SIG Technical Report Vol.2016-CE-137 No /12/ e β /α α β β / α A judgment method of difficulty of task for a learner using simple

Nano Range Specification Stable & Stable Telescopic Resonators Model Nano S Nano S Nano S Nano S Nano L Nano L Nano L Nano L Nano L Nano L Nano L 130-

1 7 ω ω ω 7.1 0, ( ) Q, 7.2 ( Q ) 7.1 ω Z = R +jx Z 1/ Z 7.2 ω 7.2 Abs. admittance (x10-3 S) RLC Series Circuit Y R = 20 Ω L = 100

ELECTRONIC IMAGING IN ASTRONOMY Detectors and Instrumentation 5 Instrumentation and detectors

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =

THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE.

IIC Proposal of Range Extension Control System by Drive and Regeneration Distribution Based on Efficiency Characteristic of Motors for Electric


光産業の将来ビジョン―ボーダレス化の中での進化と展開―(1BIZYON)

OHO.dvi

0810_UIT250_soto


On the Wireless Beam of Short Electric Waves. (VII) (A New Electric Wave Projector.) By S. UDA, Member (Tohoku Imperial University.) Abstract. A new e

* * 2

2017 (413812)


浜松医科大学紀要

, (GPS: Global Positioning Systemg),.,, (LBS: Local Based Services).. GPS,.,. RFID LAN,.,.,.,,,.,..,.,.,,, i

07_伊藤由香_様.indd

橡実験IIINMR.PDF

1

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

橡

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

2

Input image Initialize variables Loop for period of oscillation Update height map Make shade image Change property of image Output image Change time L

alternating current component and two transient components. Both transient components are direct currents at starting of the motor and are sinusoidal

LLG-R8.Nisus.pdf

1 1 LD [1] 2 3dB Er 2 [2] 1 P 1330cm 1 P 2 O 5 500cm 1 SiO 2 Ge,Si P Er 1480nm Yb 1289nm nm nm 3 1: P [3] 1330cm 1 510cm 1 [5

Studies of Foot Form for Footwear Design (Part 9) : Characteristics of the Foot Form of Young and Elder Women Based on their Sizes of Ball Joint Girth

Abstract This paper concerns with a method of dynamic image cognition. Our image cognition method has two distinguished features. One is that the imag

FreeSpace.book

磁気測定によるオーステンパ ダクタイル鋳鉄の残留オーステナイト定量

OPA134/2134/4134('98.03)

Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels).

Note.tex 2008/09/19( )


I II III IV V

( ) ,

1 Fig. 1 Extraction of motion,.,,, 4,,, 3., 1, 2. 2.,. CHLAC,. 2.1,. (256 ).,., CHLAC. CHLAC, HLAC. 2.3 (HLAC ) r,.,. HLAC. N. 2 HLAC Fig. 2


BH BH BH BH Typeset by FoilTEX 2

LT 低コスト、シャットダウン機能付き デュアルおよびトリプル300MHz 電流帰還アンプ

EQUIVALENT TRANSFORMATION TECHNIQUE FOR ISLANDING DETECTION METHODS OF SYNCHRONOUS GENERATOR -REACTIVE POWER PERTURBATION METHODS USING AVR OR SVC- Ju

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

本文/目次(裏白)

1..FEM FEM 3. 4.

Gmech08.dvi

udc-2.dvi

161 J 1 J 1997 FC 1998 J J J J J2 J1 J2 J1 J2 J1 J J1 J1 J J 2011 FIFA 2012 J 40 56

GPGPU

4/15 No.

42 1 Fig. 2. Li 2 B 4 O 7 crystals with 3inches and 4inches in diameter. Fig. 4. Transmission curve of Li 2 B 4 O 7 crystal. Fig. 5. Refractive index

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論

untitled

Table 1. Assumed performance of a water electrol ysis plant. Fig. 1. Structure of a proposed power generation system utilizing waste heat from factori


IEC :2014 (ed. 4) の概要 (ed. 2)

,,,,., C Java,,.,,.,., ,,.,, i

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

数値計算:フーリエ変換

zz + 3i(z z) + 5 = 0 + i z + i = z 2i z z z y zz + 3i (z z) + 5 = 0 (z 3i) (z + 3i) = 9 5 = 4 z 3i = 2 (3i) zz i (z z) + 1 = a 2 {


Kyushu Communication Studies 第2号

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt


e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,,

Fig. 3 Coordinate system and notation Fig. 1 The hydrodynamic force and wave measured system Fig. 2 Apparatus of model testing

( ) : 1997

技術研究報告第26号

チョークコイル・リアクタ


149 (Newell [5]) Newell [5], [1], [1], [11] Li,Ryu, and Song [2], [11] Li,Ryu, and Song [2], [1] 1) 2) ( ) ( ) 3) T : 2 a : 3 a 1 :

Gmech08.dvi

液晶の物理1:連続体理論(弾性,粘性)

02-量子力学の復習

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

4.1 % 7.5 %

Microsoft Word - mitomi_v06.doc

レーザ誘起蛍光法( LIF法) によるピストンの油膜挙動の解析

Transcription:

- i -

- i -

Application of All-Optical Switching by Optical Fiber Grating Coupler Yasuhiko Maeda Abstract All-optical switching devices are strongly required for fast signal processing in future optical communication systems. In this report, all-optical switching operations at the wavelength region of the 1.55µm utilizing the optical fiber nonlinearity in an optical fiber grating coupler (FGC) are reported theoretically and experimentally. These results indicate the possibility of applying all-optical switching devices with pico-second operation. The FGC, which is an optical fiber coupler (FC) with a refractive index grating in the coupling region, has been proposed as add/drop multiplexers (ADM) in wavelength division multiplexing (WDM) systems. This grating structure creates a narrow photonic band gap and results in reflection with a sharp spectrum at the Bragg wavelength. In order to route the signal, an all-optical switch which has two output ports and one input port is considered. A signal light is coupled by means of the FGC to a high power mode lock Ti-sapphire laser emitting at 800 nm as a pump light. The repetition frequency of the pump pulse is 80MHz, and the pulse width is 1.2ps. The wavelength characteristics, which depend on refractive effective index of gratings, can be altered by the high intensity pump pulse by increasing the effective index based on the Kerr effect. As a result, the incident optical signal can be switched between two output ports by means of an optical controlling. In this study, the reflected wavelength spectra detuning of the incident pump pulse in the nonlinear switching and switching characteristics are calculated using on the coupling equations including Kerr effect. The calculated results show that the nonlinear effect causes to increase the central wavelength of the FGC. The pump power to obtain switching operation is estimated to approximately 3kW at maximum depending on both grating length and pump pulse width. These results indicate the possibility of applying all optical switching devices in pico-second order. In addition, the switching experiments are carried out using an optical sampling oscilloscope to detect switched signal. As a result, the temporal switching waveform could not be observed due to noise. However, the results indicate that it might make possible observation of the temporal switching waveform by improving the experimental setup. The theoretical and experimental result of this research would be useful for the designs of all-optical high speed switching devices. Keyword: All optical switching, Optical fiber grating coupler, pico-second, Ti-sapphire laser, Kerr effect - ii -

...1...1...3...3...4...4...6...7...9...13...15...16...16...16...17...17...18...18...20...21...22 - iii -

...23...23...25...26...26...28...31...31...34...36...37...42...42...43...45...46...48...49 - iv -

- 1 -

- 2 -

- 3 -

- 4 -

Beam splitter UV laser beam UV laser beam Mirror Mirror Phase grating mask Optical fiber Optical fiber λ B λ λ B Λ 500m n eff+ n n eff - 5 -

Gratings Λ n n 2 Port 4 Port 3 Port 1 B = 2 Port 2 λ 1 λ 2 λ 3 2-2 Optical coupler λ 1 λ 3-6 -

β 2 β 1 θ 1 θ 2 n λ sinθ 2 = ncore sinθ + m Λ core 1 n eff 1 = n core sinθ 1 n eff 2 = n core sinθ 2 2π β 1 = n eff 1 λ 2π β 2 = n eff 2 λ - 7 -

2π β 2 = β1 + m Λ n eff 1 n = neff 2 neff + 2 β, β 1 2 β = 2 β 1 n neff Λ λbm = 2 m λ 2n Λ B = eff - 8 -

2π n( z) = neff + n( z)[1 + cos{ z + φ( z)}] Λ u(0) v(0) n eff n eff + n u(l) v(l) Uniform grating in optical fiber Λ z 0 L - 9 -

- 10 - = ) ( ) ( ) ( ) ( z v z u e e j z v z u dz d jkz jkz β κ κ β Λ = π 2 K λ η π κ n eff = 2 1 1 V = η jkz e ) ( ), ( z V z U = ) ( ) ( 0 0 ) ( ) ( 2 / 2 / z v z u e e z V z U jkz jkz = ) ( ) ( ) ( ) ( 2 / 0 0 2 / ) ( ) ( z V z U j z V z U jk jk z V z U dz d β κ κ β = ) ( ) ( ) ( ) ( z V z U j z V z U dz d δ κ κ δ 2 K = β δ

z = 0, z = L U (0) = V (0) coshγl + U ( L) V ( L) [ M ] m m γ γ 11 12 [ M ] = = δ j sinh γl κ j sinh γl γ κ j sinh γl δ coshγl j sinh γl γ 21 m m 22 γ 2 2 = κ δ * m 22 = m 11 * m 21 = m 12 2 2 11 12 = m m 1 r t U ( 0) 0, V ( L) = 0 V ( 0) = ru (0) U ( L) = tu (0) m m 21 r = 22-11 -

1 t = m 11 2 T = t 2 2 R = r = 1 t R B πl nη = tanh 2 ( ) λ B 2 2 λ B 2 π nl λ = + B π 2 n π eff L λb θr ω 2 dθ p λ dθ p τ r = = dω 2πc dλ D p 2 dτ p 2πc d θ p = = 2 2 dλ λ dω - 12 -

[M ] [M 2 ] [M N ] 0 L z L dz = N δ coshγ ( dz) + j sinh γ ( dz) U ( z) γ = * V ( z) κ j sinh γ ( dz) γ κ j sinh γ ( dz) γ U ( z + dz) = δ V ( z + dz) coshγ ( dz) j sinh γ ( dz) γ [ M ] [ M ] [ M ] [ ] = 2 M N 1-13 -

- 14 -

- 15 -

ξ n t = n eff ( dn / dt ) / n = ξ n T eff eff dλ Λ t = Λ T = η Λ T Λ dt eff λ = 2 n Λ + 2n Λ B t eff t - 16 -

Optical Power Meter Port4 Thermometer FGC GPIB Peltier device Tunable Diode Laser Port 1 Power[W] Wave length [nm] - 17 -

Optical spectrum Analyzers Attenuator Port4 FGC Port3 A Lens20 Port1 Port2 Port1 Peltiert device Port2 CW Port4 Coupler Port3 LD Nd-YVO laser SHG Mirror 532nm Ti-sapphire laser 740840nm Oscillo scope 85% 15% Autocorrelator Bare fiber connector A - 18 -

Port 4 Port 3 0.4 Port 1 100 Port 2 99.6 2-2 Fiber Coupler 780nm Port2 Port3 Port 30.7% Port Port 2 99.3% 1-2 Fiber Coupler 780nm Port2 Port3-19 -

Reflected Power [A.U.] FWHM 0.44nm Wave length [nm] λ B1 1553.8nm Power[A.U.] Wave length [nm] - 20 -

LP mode 01 11 21 02 31 Electric field[a.u.] LP01 Electric field[a.u] LP11 B=1554nm - 21 -

- 22 -

n eff 2 = n + n I - 23 -

- 24 -

Port 4 Port 3 Port B signal = B Port 1 B (1) Port 2 Port 4 Port 3 signal = B Pump B + B Port 1 (2) Port 2 (3)FGC - 25 -

1 Uniform gratings Reflected power [A.U.] 0.8 0.6 0.4 0.2 200W 600W W 2kW 0 1553 1553.5 1554 1554.5 1555 λ [nm] - 26 -

1 Relative switching [A.U.] 0.8 0.6 0.4 0.2 0 1553.36nm Uniform gratings Port3 Port4 0 0.5 1 1.5 2 Pump peak power [kw] Gauss apodization gratings - 27 -

Relative switching [A.U.] 1 0.8 0.6 0.4 0.2 1554.19nm Gauss apodization gratings Port4 Port3 0 0 0.5 1 1.5 2 Pump peak power [kw] c L CP = TCP n eff - 28 -

L CP n eff+ n n eff 1 Reflected 0.8 0.6 0.4 0.2 0W 1000W 2000W Uniform gratings Kerr effect 20% 0 1552.8 1553.3 1553.8 1554.3 1554.8 λ[nm] - 29 -

Relative switching 1 0.8 0.6 0.4 0.2 0 Port4 Port3 1554.22nm Uniform gratings Kerr effect 20% 0 1 2 3 4 Pump peak power [kw] 1 0.8 Relative itching 0.6 0.4 0.2 0 Port4 Port3 1554.43nm Uniform gratings Kerr effect 20% 0 1 2 3 4 Pump peak power [kw] - 30 -

. Oscillo scope Two phase lock-in amplifier AMP. InGaAs PIN-P.D Port 4 FGC Port 3 Light chopper A Port 1 Port 2 Fiber Coupler Port 1 Port 2 (FC) Tunable diode laser Port 4 Port 3 1540nm Optical power meter 800nm LD Nd-YVO Laser SHG 532nm Ti-sapphire laser 800nm Oscillo scope Autocorrelator Glass filter Lens20 mirror Bare fiber connector A - 31 -

- 32 -

Reflected power [A.U.] Wavelength [nm] - 33 -

1 Reflected power [A.U.] 0.8 0.6 0.4 0.2 0 1553 1553.5 1554 1554.5 1555 Wavelength λ[nm] Lock-inamp. output voltage [A.U.] 1 0.8 0.6 0.4 0.2 0-0.2-0.4-0.6-0.8-1 Wavelength shift 0.05nm 0.1nm 0.2nm -1.2 1553 1553.5 1554 1554.5 1555 Wavelength λ[nm] - 34 -

Refrected power [A.U.] 1 0.8 0.6 0.4 0.2 0 1552 1553 1554 1555 Wavelength λ[nm] Lock-inamp.output voltage [A.U.] 500W 1.5kW 2kW Wavelength λ[nm] - 35 -

Lock-in amp.output voltage [mv] 10 9 8 7 6 5 4 3 2 1 0 780W 879W 1080W 1438W 1552 1552.5 1553 1553.5 1554 1554.5 1555 Wavelength λ[nm] 12 Lock-in amp. output voltage [mv] 10 8 6 4 2 1553.5nm 1553.7nm 1553.8nm Pump 800nm 1.2ps 0 400 600 800 1000 1200 1400 Pump peak power [W] - 36 -

800nm Control Plus Light chopper. Oscillo scope Ti: sapphire laser Tunable diode laser Port 2 2-1Coupler Port 3 Port 1 Glass filter InGaAs PIN-P.D. AMP. Two phase lock-in amplifier 1540nm Signal Lens20-37 -

Lock-in amp. Output voltage[v] 0.03 Light chipper frequency 280Hz 0.025 0.02 0.015 0.01 0.005 0 1555.5 1556 1556.5 1557 1557.5 Wavelength λ[nm] 0W 0.6kW 1kW 1.3kW 1.6kW 1.8kW 2.1kW - 38 -

1540nm Signal Tunable Port 3 Diode 2-1 FC Port 1 Port 4 InGaAs FGC Port 3 PIN-P.D Port2 Si Port 2 AMP. 800nm Pump Port 1. Oscillo scope Two phase lock-in amplifier 4-21 FGC - 39 -

4-20 1552.2nm 1553.2nm 4-224-23-40 -

- 41 -

λ/4 L/2 L/2 Λ n n core Quarter wave phase shift - 42 -

1 Reflected Power [A.U.] 0.8 0.6 0.4 0.2 λ/4phase shiftfgc Normal FGC 0 1553 1553.5 1554 1554.5 1555 1555.5 1556 λ[nm] - 43 -

1 0.8 0.6 0.4 0.2 Pump 800nm,1.2ps 3kW 2kW 1kW 0W 0 1554 1554.2 1554.4 1554.6 1554.8 1555 Pump 800nm,1.2ps - 44 -

- 45 -

- 46 -

- 47 -

- 48 -

- 49 -

- 50 -

- 51 -

- 52 -

- 53 -