untitled

Similar documents
64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

untitled

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

TOP URL 1

66 σ σ (8.1) σ = 0 0 σd = 0 (8.2) (8.2) (8.1) E ρ d = 0... d = 0 (8.3) d 1 NN K K 8.1 d σd σd M = σd = E 2 d (8.4) ρ 2 d = I M = EI ρ 1 ρ = M EI ρ EI

知能科学:ニューラルネットワーク

知能科学:ニューラルネットワーク

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

pdf

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

Gmech08.dvi

7

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

Note.tex 2008/09/19( )

( ) ( )

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

Gmech08.dvi

73


50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

QMII_10.dvi

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

untitled

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

振動と波動

i

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

dvipsj.8449.dvi

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

all.dvi


S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

Part () () Γ Part ,

8 300 mm 2.50 m/s L/s ( ) 1.13 kg/m MPa 240 C 5.00mm 120 kpa ( ) kg/s c p = 1.02kJ/kgK, R = 287J/kgK kPa, 17.0 C 118 C 870m 3 R = 287J

1 8, : 8.1 1, 2 z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = n i=1 a ii x 2 i + i<j 2a ij x i x j = ( x, A x), f =


05Mar2001_tune.dvi


6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2

構造と連続体の力学基礎

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

xyz,, uvw,, Bernoulli-Euler u c c c v, w θ x c c c dv ( x) dw uxyz (,, ) = u( x) y z + ω( yz, ) φ dx dx c vxyz (,, ) = v( x) zθ x ( x) c wxyz (,, ) =

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P

1 12 ( )150 ( ( ) ) x M x 0 1 M 2 5x 2 + 4x + 3 x 2 1 M x M 2 1 M x (x + 1) 2 (1) x 2 + x + 1 M (2) 1 3 M (3) x 4 +

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

TOP URL 1

最新耐震構造解析 ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 3 版 1 刷発行時のものです.

untitled

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,,

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z


5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

PowerPoint プレゼンテーション

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

B [ 0.1 ] x > 0 x 6= 1 f(x) µ 1 1 xn 1 + sin sin x 1 x 1 f(x) := lim. n x n (1) lim inf f(x) (2) lim sup f(x) x 1 0 x 1 0 (

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

B ver B

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )


x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v

NETES No.CG V

I


II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

LLG-R8.Nisus.pdf

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP

5 c P 5 kn n t π (.5 P 7 MP π (.5 n t n cos π. MP 6 4 t sin π 6 cos π 6.7 MP 4 P P N i i i i N i j F j ii N i i ii F j i i N ii li i F j i ij li i i i

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

鉄筋単体の座屈モデル(HP用).doc


I 1

ẍ = kx, (k > ) (.) x x(t) = A cos(ωt + α) (.). d/ = D. d dt x + k ( x = D + k ) ( ) ( ) k k x = D + i D i x =... ( ) k D + i x = or ( ) k D i x =.. k.

橡博論表紙.PDF

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1)

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat

AHPを用いた大相撲の新しい番付編成


( ) e + e ( ) ( ) e + e () ( ) e e Τ ( ) e e ( ) ( ) () () ( ) ( ) ( ) ( )

Transcription:

- k k k = y. k = ky. y du dx = ε ux ( ) ux ( ) = ax+ b x u() = ; u( ) = AE u() = b= u () = a= ; a= d x du ε x = = = dx dx N = σ da = E ε da = EA ε A x A x x

- σ x σ x = Eε x N = EAε x = EA = N = EA k = = EA. AE k = =. A E A E 6 N / mm = 6 kn / mm = A =.5 π.5 mm = π.[ m ] [ m ] = [ m] [ mm] =

-.5 π 6 k = = 8.89 [ N / mm] y y M( x) + x= M ( x) = x dw EI = M( x) dx = x EI δ dw dx θ EI = EI = x + C M ( x ) 6 EIw = x + Cx + C x [ C C ] x = θ () = w () = θ () = C

- EIθ = + C = () C = w () = EIw C 6 () = + = C = 6 = C wx ( ) = ( x x+ ) EI 6 δ x = w() = δ = EI δ = EI k y EI = = EI k =.5 yx ( = /)

- 5 y = 8EI 8EI k = y = EI.6 y k I b I = 5. = =.5 cm δ 5[ cm ] E = 5 = 6 kn / mm 6 N/ cm 5[ cm ] (.5).[ cm ] 5 - EI 6.5 k = = = 5.56 / 5 [ N cm]

- 6 = R; R= = Q+ Q R Mij + M ji Q = ( ) I I EI 6EIR 6EI Mij = M ji = ( R) = = E = Q+ Q = ( I + I) E k = = ( I+ I ).7 δ I θ = θ = R θ = θ E I I

- 7 EI = EI M = θ R EI M = M = θ EI M = ( θ R) = M EI M = ( θ R) = M M ( θ R) ( ) ( ) M + M = I I ( θ R) + θ = I I I R = ( + ) θ M M EI = + ( θ θ R) ij i j EI = + ( θ θ R) ji j i I θ = R I I + = Q+ Q M + M Q = I 6EI 6EI = ( θ R) = ( ) R I I + I 6I 6EI + = R I I + Q M + M = = Q

- 8 K H = Q I 6I EI + δ = R I I δ = + δ R = I 6I EI + K H = = δ I I.8 + K ' H I K I 6I EI + = I I + ' H I K I 6 EI + I EI = ( I ) + I ' H I K K H H EI = K EI i K = i= i k =.5 k =.5

- 9.5 DFc = =.5.5 +.5.5 DFb = =.5.5 +.5 ψ = X M = k = 5 M = k = 5 X = δ () R (.5) (.5) E (.5 + 75.) X 87.5X Q = = 75.5 87.5 X /.5

- 87.5X = Q= X X = 87.5 ψ ψ = X = 87.5 R ψ = RK = EI EI = 87.5 87.5 6EI EI KH = = =.5 I =.5 II ; = I K H I 6I EI + EI.5 + 6 5EI.5EI = I I = = = +.5 +

W ys =.9 k k y s y m d ( y+ y s ) m m = dt W W d ( y+ ys ) m = k( y+ y ) s + W dt y s t d y + ky = m dt m dt d y ω ; y k + = ω = m ω f T ω f =. π π T = =. f ω - K( y+ y s ) y + y s m W a) b) c)..

- π m π mg T = = π = ω k g k mg W cm η; η = = ; g = 98 5 k k sec. (.) y = Ccosω t+ Dsiω t.5 t = y = y y = v y = Ccos + Dsi C = y (.5) y = Cωsiωt+ Dωcosωt v = Cωsi + Dωcos v = Dω v D = ω.6 C D (.5) v y y t ω t acosθ + bsiθ = a = + + b si ( θ + α) cosω si ω.7 α = ta a b

- (.7) v = + si( + α) y y ωt ω α.8 y v + ω α y α = ta y v ω.9 v ω y (.) y = Ccosω t+ Dsiω t y = Cω siω t+ Dω cosω t. t = y = y y = y = Ccos + Dsi C = y Cωsi + Dωcos = Dω = ; D= C D (.) y = y cos ωt.

- f T W 588 k = = = 76 [ N/ m] y.5 W 588 m= = = 6[ kg] g 9.8 [ N ] [ ] kg m /sec [ N] = [ kg] m = kg m /sec /sec k 76 ω = = =. / sec m 6 ω. f = = =.[ Hz] π π T = =.9[ sec] f [ rad ] T 5 =..6 =.7 sec 5 E =.6 kn / cm I = 5 [ cm] [ ] m [ kn ] [ N ] 98 9.8 [ kg] = = =. 9.8 9.8

- 5 5 EI.6 k = = 6 5 = 9. / =.9 / 6 [ kn cm] [ N m] W = 98kN m T = π =. k.9 = = 6 [ ] 6.8.5.8 sec W[ N] W 98 η = = =.98 6 k.9 =.98 [ cm] [ m] EI 5m T = η =..98 =..7 5 =.8 sec [ ] b D= 5 5[ cm] E =.6 kn / cm W 9[ kn] = 9[ kn ] 9 [ N ] m= = =. [ kg] 9.8 9.8 I bd 5 5 5 = = = 5. cm 5 5 [cm ] W=9 [kn] I= E=.6 [kn/cm ] 6[m] 5 5 [cm ] [m]

- 6 EI.6 5. k = = 6 = / =. / 5 7 [ kn cm] [ N m] m. T = π =.. 7 k = = [ ] 6.8.7.7 sec W[ N] W 9 η = = =.7 7 k. =.7 [ cm] [ m] T = η =..7 =..85 5 =.7 sec [ ] W=9 [kn] 6 [cm ] 5 5 [cm ] E =.6 kn / cm 7 =.6 kn / m 6[m] I I b 5 5 [cm ] E=.6 [kn/cm ] [m]

- 7 I I b bd 5 5 = = 5 = 5.8 cm = 5.8 m bd 6 = = 5 = 5. cm = 5. m W = 9 E = 9 [ kn] [ N ] =.6 kn / cm k =.6 7 (kn/m ) 5.8 6 5. 7 +.6 5.8 k = 6 5.8 5. + 6. + 5. =..6 +.7 =..6 [ kn m] 7 [ kn cm] [ N m] =.5 / = 5. / =.5 / (.8) I 6I EI + k = I I + m [ N ] W 9 m= = =. g 9.8 [ kg] T T π m. = = π = π =.6 sec 7 ω k.5 [ ] W[ N ] g m/sec T W 9 =. η =. =. =.5[ sec] k 5.