tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

Similar documents
TOP URL 1

TOP URL 1

TOP URL 1

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

TOP URL 1

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2


1.1 foliation M foliation M 0 t Σ t M M = t R Σ t (12) Σ t t Σ t x i Σ t A(t, x i ) Σ t n µ Σ t+ t B(t + t, x i ) AB () tα tαn µ Σ t+ t C(t + t,

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

Untitled

all.dvi

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

Gmech08.dvi

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

all.dvi

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

F S S S S S S S 32 S S S 32: S S rot F ds = F d l (63) S S S 0 F rot F ds = 0 S (63) S rot F S S S S S rot F F (63)

( ) (ver )

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

untitled

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

: (a) ( ) A (b) B ( ) A B 11.: (a) x,y (b) r,θ (c) A (x) V A B (x + dx) ( ) ( 11.(a)) dv dt = 0 (11.6) r= θ =

meiji_resume_1.PDF


f : R R f(x, y) = x + y axy f = 0, x + y axy = 0 y 直線 x+y+a=0 に漸近し 原点で交叉する美しい形をしている x +y axy=0 X+Y+a=0 o x t x = at 1 + t, y = at (a > 0) 1 + t f(x, y

all.dvi

i 18 2H 2 + O 2 2H 2 + ( ) 3K


Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

量子力学 問題

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

gr09.dvi

SO(2)

Note.tex 2008/09/19( )


Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

Part () () Γ Part ,

: , 2.0, 3.0, 2.0, (%) ( 2.

A

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

Einstein ( ) YITP

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc


1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

7-12.dvi

[1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin Clifford Spin 10 A 12 B 17 1 Cliffo

1 8, : 8.1 1, 2 z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = n i=1 a ii x 2 i + i<j 2a ij x i x j = ( x, A x), f =

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

Gmech08.dvi

( ) ( )


量子力学A

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1




S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

DVIOUT

all.dvi

arxiv: v1(astro-ph.co)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

b3e2003.dvi

73

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x


δ ij δ ij ˆx ˆx ŷ ŷ ẑ ẑ 0, ˆx ŷ ŷ ˆx ẑ, ŷ ẑ ẑ ŷ ẑ, ẑ ˆx ˆx ẑ ŷ, a b a x ˆx + a y ŷ + a z ẑ b x ˆx + b


φ s i = m j=1 f x j ξ j s i (1)? φ i = φ s i f j = f x j x ji = ξ j s i (1) φ 1 φ 2. φ n = m j=1 f jx j1 m j=1 f jx j2. m

pdf

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

201711grade1ouyou.pdf

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

newmain.dvi

2000年度『数学展望 I』講義録

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( )

keisoku01.dvi

LLG-R8.Nisus.pdf

I

Transcription:

tomocci 18 7 5...,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. M F (M), X(F (M)).. T M p e i = e µ i µ. a a = a i e i. p 1

2 T M p ( ) T M p., ( ) ( ). T M p θ i, θ i e j = δ i j, e i θ i = e i θ i = 1. dx µ. dx µ ν = δ µ ν, µ dx µ = µ dx µ = 1 3 g T M p T M p g(e i, e j ) = η ij = diag(η, ζ,, ζ). (η, ζ), (+,+), (+, ), (,+). θ i g = η ij θ i θ j g 1 = η ij e i e j (η ij = η ij ). g( µ, ν ) = η ij θµθ i ν j = g µν, g 1 (dx µ, dx ν ) = η ij e µ i eν j = g µν g µν g, ( ).. η ik η kj = δ i j, g µρ g ρν = δ µ ν. g = det(g µν ) = ηζ n 1 (det(θ i µ)) 2 = ηζ n 1 (det(e µ i )) 2 = det(g µν ) 1. A, B g(a, B) = η ij A i B j = g µν A µ B ν. α α = g 1 (α, ) α. α A α, A : α A = g(α, A) 2

4 x µ f(x), λ y µ = x µ + λx µ (x) ( λ 1) f(y) f(y) = f(x) + λxf(x). X = X µ µ. f(y) y=x+λx f(x) lim λ 0 λ = Xf(x),.,. y x. y e i (y) x e i (x)., e i (x) = e i (x) + λ X e i (x). X., e i x, e i (x), X e i = e j ω j i X ω i j.,. A = A i (y)e i (y) A (x) = A i (y)e i (x). ω i jµ = ω i j µ A (x) = A i (y)e i (x) = (A i + X µ µ A i )(e i + e j ω j iµx µ ) = A(x) + X µ ( µ A i + ω i jµa j )e i = A(x) + X A(x) Leibnitz X (A i e i ) = ( X A i )e i + A i X e i, f X f = Xf., fx+y = f X + Y. 3

µ = µ, X = X µ µ, X f = X µ µ f = X µ µ f. A µ A = ( µ A i + ω i jµa j )e j., ( µ A) i µ A i. θ i, θ i e j = δ i j µ θ i = ω i jµθ j, µ ν = Γ ρ µν ρ µ A = ( µ A ν + Γ ν µρa ρ ) ν. ( µ A) ν µ A ν. ω i jµ, Γ ρ µν e i = µ (e µ i µ). ω i jµ = θ i ρ( µ e ρ j + Γρ µνe ν j ) Γ ρ µν = e ρ i ( µθ i ν + ω i jµθ j ν) 4

5 Lie, 2 x µ, y µ = x µ + λx µ (x), ( λ 1) A(x) A(y),. y A(y) x, f(y) Ã(x)f(y(x)) = A(y)f(y) Ã(x).., 2 Lie Ã(x) = A(y) y=x+λx = xµ (y) A ν (y) y ν 1 L X A = lim λ 0 λ (. x µ (y) y ν y=x+λx x µ ) A ν (y) A µ (x) y=x+λx L X A = 1 lim λ 0 λ ((δµ ν λ ν X µ )(A ν + λx ρ ρ A ν ) A µ ) µ = (X ν ν A µ A ν ν X µ ) µ L A X = L X A, L A+B = L A + L B, L X (fa) = (Xf)A + fl X A L X f = Xf L fx Y = fl X Y (Y f)x., f X, Y Y µ µ (X ν ν f) = Y µ ( µ X ν ) ν f + Y µ X ν µ ν f, 2 2.., [X, Y ]f = X(Y f) Y (Xf) = (X ν ν Y µ Y ν ν X µ ) µ f. Lie : L X Y = [X, Y ] L X µ = ( µ X ν ) ν, L X dx µ = ( ν X µ )dx ν. Lie. L X α = (X ν ν α µ + α ν µ X ν )dx µ 5 µ

6 Lie Lie., 2 Lie. (x 1, x 2 ) θ (y 1, y 2 ),, Ã 1 (x) = A 1 (y(x)) cos θ + A 2 (y(x)) sin θ Ã 2 (x) = A 1 (y(x)) sin θ + A 2 (y(x)) cos θ (L X A) 1 = x 2 1 A 1 + x 1 2 A 1 + A 2 (L X A) 2 = x 2 1 A 2 + x 1 2 A 2 + A 1 ( X µ = ( x 2, x 1 ))., Ãi (x) = A i (y(x)),. Lie,., X = d/dt fx X Lie L X (fx) = (df/dt)x.,. ω i j,. 6

7,. X, Y [ X, Y ] = X µ Y ν [ µ, ν ] + [X, Y ] µ µ, [ µ, ν ] [ µ, ν ] X Y Y X [X,Y ]., f Z,. T (X, Y )f = ( X Y Y X [X, Y ])f R(X, Y )Z = ( X Y Y X [X,Y ] )Z. T (torsion tensor field), R (curvature tensor field) Riemann, Riemann. T (X, Y ) = X i Y j T (e i, e j ).. X, Y T ( µ, ν )f = (Γ ρ µν Γ ρ νµ) ρ f = T ρ µν ρ f = T i µνe i f T i µν = θ i ρt ρ µν ω i jµ Γ ρ µν T i µν = 2( [µ θ i ν] + ω i j[µθ j ν] ). [, ],, (, ).. R(X, Y )(fz) = fr(x, Y )Z, Z µ, e i. R( µ, ν ) σ = ρ 2( [µ Γ ρ ν]σ + Γ ρ [µ λγ λ ν]σ) = ρ R ρ σµν R( µ, ν )e j = e i 2( [µ ω i j ν] + ω i k[µ ω k j ν]) = e i R i jµν R ρ σµν R i jµν R i jµν = θ i ρe σ j R ρ σµν. 7

8, η ij, η ij i, j, k,, g µν, g µν µ, ν, ρ,.. g = g µ g = 0, (compatible). g = g µν dx µ dx ν µ Γ µ,ρν + Γ ν,ρν = ρ g µν., Γ ρ,µν = S ρ,µν + 1 2 T ρ,µν µ, ν S ρ,µν = Γ ρ,(µν) 1 2 T ρ,µν = Γ ρ,[µν], S µ,ρν + S ν,ρν = ρ g µν T (µ,ρ ν), S, Γ ρ,µν = Γ (0) ρ,µν T (µ,ν)ρ + 1 2 T ρ,µν. Γ (0) ρ,µν = 1 2 ( µg νρ + ν g µρ ρ g µν ) Γ (0)ρ µν Christoffel., g = η ij θ i θ j e µ i eν j ω ijµ + ω jiµ = 0 e µ i eν j T kµν = 2e µ [i eν j]( µ θ kν + ω klµ θ l ν) i, j, k. ω ijµ = e ρ [i eσ j]θ i µ ρ θ k σ + e ν [i µ θ j]ν e ν [i ν θ j]µ + e ν [it j]νµ + 1 2 θk µe ρ i eσ j T k,ρσ 8

9 2 P, Q C L L = Q P dt X 2 1/2. C t, X = X µ µ = (dx µ /dt) µ., X 2 = g(x, X) = g µν X µ X ν. L, C. L δx µ,. δl = X µδx µ X 2 1/2 Q P Q P dt sgn(x2 ) X 2 1/2 δx µ ( ) ( δ ν µ Xµ X ν dx ν X 2 dt + Γ (0)ν ρσx ρ X σ ) δx µ = g µν δx ν, X µ = g µν X ν sgn(x 2 ) = X 2 / X 2. ( ) ( ) δ ν µ Xµ X ν dx ν + Γ (0)ν ρσx ρ X σ = 0 X 2 dt. t X = (ds/dt)t, g(t, T ) = const. t s = s(t) : dt µ ds + Γ(0)µ ρσt ρ T σ = 0 s (, affine parameter)., X. X = X + λ X X, λ 1., X X = fx. f. X = (1 + λf)x, X. dx µ + Γ (0)µ ρσx ρ X σ g µτ T ρ,στ X ρ X σ = fx µ dt. X µ f, ( ) ( ) δ ν µ Xµ X ν dx ν + Γ (0)ν ρσx ρ X σ g µτ T X 2 ρ,στ X ρ X σ = 0 dt.,,. 9

10 Einstein. Minkowski, ζ = η. Einstein-Hilbert, S g = η d n x ηg g µν R µν 2κ S m = m dτ. R µν = R ρ µρν, dτ 2 = ηg µν dx µ dx ν > 0. S g δg = gg µν δg µν, δg µν = g µα g νβ δg αβ, δr µν = 2 [ρ δγ ρ µ]ν δs g = η κ d n x µ ( ηg g σ[µ δγ ν] νσ) η 2κ d n x ( ηg R µν 1 ) 2 g µνr δg µν R = g µν R µν. S m δdτ = 1ηv 2 µv ν dτδg µν, v µ = g µν dx ν /dτ δs m = ηm d n x dτ v µ (τ)v ν (τ)δ n (x z(τ))δg µν 2 z(τ). T µν = 2 δs m 1 = ηm dτ v ηg δg µν µ (τ)v ν (τ)δ n (x z(τ)) ηg(x). Einstein. R µν 1 2 g µνr = ηκt µν 10

11 Newton, ζ = η. ( ) ηg ab δ ab g 0a 0 g µν ηg 00 1 2 0,, Newton. η = g µν v µ v ν g 00 (v 0 ) 2 v 0 (ηg 00 ) 1/2. dv a dx 0 = 1 v 0 dv a dτ = 1 v 0 Γa µνv µ v ν Γ a 00v 0 Γ a 00 = F a F grad( 1 2 ηg 00).. ηg 00 = 1 + 2φ φ Newton. Einstein trace R µν = κ(t µν 1 n 2 g µνt ). R 00 = R µ 0µ0 a Γ a 00 divf T = g µν T µν g 00 T 00, T 00 1 n 2 g 00T. Gauss T 00 ηmδ n 1 (x) ( 1 1 ) n 2 g 00g 00 T 00 n 3 n 2 T 00 ηm n 3 n 2 δn 1 (x) divf = κm n 3 n 2 δn 1 (x). n 1, F r = n 3 κm Ω n 2 (n 2) r n 2 Ω n 2 n 2 { Ω n 2 = 2 n/2 π (n 2)/2 /(n 3)!! (n even) 2π (n 1)/2 /( n 1 )! 2 (n odd) n = 4 κ = 8πG (G Newton ). 11