Similar documents
,, Andrej Gendiar (Density Matrix Renormalization Group, DMRG) 1 10 S.R. White [1, 2] 2 DMRG ( ) [3, 2] DMRG Baxter [4, 5] 2 Ising 2 1 Ising 1 1 Ising

LLG-R8.Nisus.pdf

数学演習:微分方程式

ohp_06nov_tohoku.dvi

(a) (b) (c) (d) 1: (a) (b) (c) (d) (a) (b) (c) 2: (a) (b) (c) 1(b) [1 10] 1 degree k n(k) walk path 4

ẋ = ax + y ẏ = x x by 2 Griffith a b Saddle Node Saddle-Node (phase plane) Griffith mrna(y) Protein(x) (nullcline) 0 (nullcline) (

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

Lagrange.dvi

IPSJ SIG Technical Report NetMAS NetMAS NetMAS One-dimensional Pedestrian Model for Fast Evacuation Simulator Shunsuke Soeda, 1 Tomohisa Yam

x E E E e i ω = t + ikx 0 k λ λ 2π k 2π/λ k ω/v v n v c/n k = nω c c ω/2π λ k 2πn/λ 2π/(λ/n) κ n n κ N n iκ k = Nω c iωt + inωx c iωt + i( n+ iκ ) ωx

L. S. Abstract. Date: last revised on 9 Feb translated to Japanese by Kazumoto Iguchi. Original papers: Received May 13, L. Onsager and S.

ver.1 / c /(13)


吸収分光.PDF

([15], [19]) *1 ( ) 2, 3 ([2, 14, 1]) ẋ = v + m 0 (h a (cl + x) h a (cl x)), v = v [ δ m 1 (v 2 + w 2 ) ] + m 2 (h a (cl + x) h a (cl x)), ẏ


QMII_10.dvi

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,,

D-brane K 1, 2 ( ) 1 K D-brane K K D-brane Witten [1] D-brane K K K K D-brane D-brane K RR BPS D-brane

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

08-Note2-web


corega UPS 250 取扱説明書

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat

2017

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

( ) ) AGD 2) 7) 1

Shunsuke Kobayashi 1 [6] [11] [7] u t = D 2 u 1 x 2 + f(u, v) + s L u(t, x)dx, L x (0.L), t > 0, Neumann 0 v t = D 2 v 2 + g(u, v), x (0, L), t > 0. x

1 [ 1] (1) MKS? (2) MKS? [ 2] (1) (42.195k) k 2 (2) (3) k/hr [ 3] t = 0 10 ( 1 velocity [/s] 8 4 O


Anderson ( ) Anderson / 14


1 1 ( ) ( ) AHS Key Words: car-following, basic freeway segment, capacity bottleneck 1. ( ) ( ) ( ) 1),2) 2. (1) ( ) ( ) ( ) 3),4) 1

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

sikepuri.dvi

4.6 (E i = ε, ε + ) T Z F Z = e βε + e β(ε+ ) = e βε (1 + e β ) F = kt log Z = kt log[e βε (1 + e β )] = ε kt ln(1 + e β ) (4.18) F (T ) S = T = k = k

DVIOUT-fujin

1 1.1 [ 1] velocity [/s] 8 4 (1) MKS? (2) MKS? 1.2 [ 2] (1) (42.195k) k 2 (2) (3) k/hr [ 3] t = 0

( 3) b 1 b : b b f : a b 1 b f = f (2.7) g : b c g 1 b = g (2.8) 1 b b (identity arrow) id b f a b g f 1 b b c g (2.9) 3 C C C a, b a b Hom C (a, b) h

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a



<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

untitled

(interferometer) 1 N *3 2 ω λ k = ω/c = 2π/λ ( ) r E = A 1 e iφ1(r) e iωt + A 2 e iφ2(r) e iωt (1) φ 1 (r), φ 2 (r) r λ 2π 2 I = E 2 = A A 2 2 +

xyz,, uvw,, Bernoulli-Euler u c c c v, w θ x c c c dv ( x) dw uxyz (,, ) = u( x) y z + ω( yz, ) φ dx dx c vxyz (,, ) = v( x) zθ x ( x) c wxyz (,, ) =

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)

meiji_resume_1.PDF

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

( ) ( ) 1729 (, 2016:17) = = (1) 1 1

振動工学に基礎


薄膜結晶成長の基礎4.dvi

d > 2 α B(y) y (5.1) s 2 = c z = x d 1+α dx ln u 1 ] 2u ψ(u) c z y 1 d 2 + α c z y t y y t- s 2 2 s 2 > d > 2 T c y T c y = T t c = T c /T 1 (3.

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

proc.dvi

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

IPSJ SIG Technical Report Vol.2014-CG-155 No /6/28 1,a) 1,2,3 1 3,4 CG An Interpolation Method of Different Flow Fields using Polar Inter

2 1 x 2 x 2 = RT 3πηaN A t (1.2) R/N A N A N A = N A m n(z) = n exp ( ) m gz k B T (1.3) z n z = m = m ρgv k B = erg K 1 R =

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

Untitled

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

図 : CGC 回転面. 左の図は 正の場合の平行曲面として得られる平均曲率 一定回転面 ダラネーアンデュロイド 上 とノドイド 下, 中の図は その平行正 CGC 回転面 右の図は負 CGC 回転面 ミンディング曲面と呼 ばれる 図 2: 回転面でない位相的な円柱面 螺旋対称性を持つ. ダラネー

.. ( )T p T = p p = T () T x T N P (X < x T ) N = ( T ) N (2) ) N ( P (X x T ) N = T (3) T N P T N P 0

(extended state) L (2 L 1, O(1), d O(V), V = L d V V e 2 /h 1980 Klitzing

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3


1 X X A, B X = A B A B A B X 1.1 R R I I a, b(a < b) I a x b = x I 1.2 R A 1.3 X : (1)X (2)X X (3)X A, B X = A B A B = 1.4 f : X Y X Y ( ) A Y A Y A f

1).1-5) - 9 -

Nosé Hoover 1.2 ( 1) (a) (b) 1:

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( )

高知工科大学電子 光システム工学科

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

飽和分光

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2

液晶の物理1:連続体理論(弾性,粘性)



( ) s n (n = 0, 1,...) n n = δ nn n n = I n=0 ψ = n C n n (1) C n = n ψ α = e 1 2 α 2 n=0 α, β α n n! n (2) β α = e 1 2 α 2 1

d (i) (ii) 1 Georges[2] Maier [3] [1] ω = 0 1

a L = Ψ éiγ c pa qaa mc ù êë ( - )- úû Ψ 1 Ψ 4 γ a a 0, 1,, 3 {γ a, γ b } η ab æi O ö æo ö β, σ = ço I α = è - ø çèσ O ø γ 0 x iβ γ i x iβα i

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t

, 1.,,,.,., (Lin, 1955).,.,.,.,. f, 2,. main.tex 2011/08/13( )

untitled

Radiation from moving charges#1 Liénard-Wiechert potential Yuji Chinone 1 Maxwell Maxwell MKS E (x, t) + B (x, t) t = 0 (1) B (x, t) = 0 (2) B (x, t)

(5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b)

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

ψ(, v = u + v = (5.1 u = ψ, v = ψ (5.2 ψ 2 P P F ig.23 ds d d n P flow v : d/ds = (d/ds, d/ds 9 n=(d/ds, d/ds ds 2 = d 2 d v n P ψ( ψ

Gelfand 3 L 2 () ix M : ϕ(x) ixϕ(x) M : σ(m) = i (λ M) λ (L 2 () ) ( 0 ) L 2 () ϕ, ψ L 2 () ((λ M) ϕ, ψ) ((λ M) ϕ, ψ) = λ ix ϕ(x)ψ(x)dx. λ /(λ ix) ϕ,

取扱説明書 [d-01H]

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論

II Brown Brown

Transcription:

Bifurcation Structure of a Novel Car-following Model with Relative Velocity Effect 1 Akiyasu Tomoeda 2 Tomoyuki Miyaji 3 2011 AUTO Hopf Kota Ikeda 1 [1, 2] [3, 4, 5]. [4] 1 1 / / JST CREST 2 / 3 / 54

(, ) [6, 7] [8, 9, 10, 11]. Gasser [8] [6] t j x j (t) ẍ j (t) = a {V (h j (t)) ẋ j (t)} (1) h j (t) = x j+1 (t) x j (t) j (j + 1 ) V (h j (t)) 1 ( NEXCO ) 55

No.1 (2016) [6] V (h) = tanh(h 2) + tanh(2) Gasser Hopf Hopf Orosz [9, 10, 11] ẍ j (t) = a {V (h j (t τ)) ẋ j (t)} (2) Gasser Hopf (2) τ T = 1/a 2011 (STNN ) [12] 2 STNN AUTO [13] 3 4 2 STNN 2.1 STNN 2011 (STNN ) [12] STNN [12] STNN v ( ) j v j = a b (h j d) 2 exp cḣj γv j. (3) a, b, c, d, γ a a d b, c, γ 56

(, ) STNN (3) ẍ j = a ẋ j W (h j, ḣj). (4) (3) W W (h j, ḣj) = b ( ) (h j d) 2 exp cḣj + γ (5) 2.2 STNN (3) [12] (3) N (4) (x j, v j ) = (x j, v j ) x j (t) = vt + (j 1) N, v j (t) = v, (j = 1, 2,..., N). (6) v = N > d (7) a W (/N, 0) (8) w 0 = W (/N, 0), w 1 = W h (/N, 0), w 2 = W v (/N, 0) W h W v W ε (x j, v j ) = (x j + εϕ j, v j + εψ j) ε { ϕj = ψ j, ψ j = w 0 ψ j vw 1 (ϕ j+1 ϕ j ) vw 2 (ψ j+1 ψ j ) (9) ϕ 1, ϕ 2,..., ϕ N Fourier N 2 ( ) 0 1 vw 1 (1 ω n ) vw 2 (1 ω n ) w 0 (10) n = 0, 1,..., N 1 ω n = e 2πin/N λ ± n = 1 2 ( p ± p 2 4q), p = w 0 vw 2 (1 ω n ) q = vw 1 (1 ω n ) 57

No.1 (2016) ω N n = ω n λ ± N n = λ± n (3) w 0 > 0, w 1 < 0, w 2 < 0 Reλ + n 0 (w 0 2vw 2 ) 2 v(w 1 + w 2 (w 0 2vw 2 )) 1 + cos 2nπ N (11) (11) n, n. 3 AUTO [12] AUTO [13] STNN AUTO 1 AUTO N x N+1 2 y j [14] 58

(, ) x N+1 = x 1 + h N = x 1 + x N, (12) N h j = (13) j=1 N x = 0 y = (y 1,..., y N ) N y y = (y 1,..., y N ) = (h 1,..., h N 1, x 1 ) (14) ( 2)j 1 1 j 1 x 1 = y N, x j = y N + y k, (j = 2,..., N) (15) x j y (3) N ÿ 1 = (ẏ N + ẏ 1 )W (y 2, ẏ 2 ) + ẏ N W (y 1, ẏ 1 ), j j 1 ÿ j = (ẏ N + ẏ k )W (y j+1, ẏ j+1 ) + (ẏ N + ẏ k )W (y j, ẏ j ), ( N ) ÿ N 1 = ẏ k W ( ÿ N = a ẏ N W (y 1, ẏ 1 ). N 1 N 1 y k, ẏ k ) + (ẏ N + N 2 ẏ k )W (y N 1, ẏ N 1 ), j = 2, 3,..., N 2 (16) y N y N ẏ N (3) (16) (16) AUTO (16) STNN c = 0 c c 2 c 0 [14] Hopf Hopf STNN [12] a = 0.73, b = 3.25, d = 5.25, γ = 0.0517 N = 30 (16) 3.1 (c = 0) c = 0 (11) 30 12 Hopf 59

No.1 (2016) STNN 3 3 3 Hopf = 1333.43 Hopf ( dh 1 dt = 0) ( = 1333.43) ( = 1333.41 = 2619.25) 1333.43 < < 2619.25 STNN [8] 4 0.006 3 0.004 dh 1 /dt 2 dh 1 /dt 0.002 1 0 0 0 500 1000 1500 2000 2500 SE UE SC UC 1333 1333.5 1334 SE UE SC UC 3 ( ) STNN [14] ( ) ( = 1333.43) [14] Stable Equilibrium SE Unstable Equilibrium UE Stable Cycle SC Unstable Cycle UC. 3.2 (c 0) c 0. c Hopf (, c) 2, c c = 0 Hopf ((, c) = (205.612, 0), (1333.41, 0)), c 4 2 Hopf (, c) = (395.55, 1.955) c > 1.995 Hopf 60

(, ) c Hopf c > 1.955 (, c) = (1019.23, 0.6664) c > 0.6664 3 0 < c < 0.6664, 0.6664 < c < 1.955, 1.955 < c 2 1.5 HB SN 0.75 0.5 HB SN c 1 c 0.5 0.25 0 0 500 1000 1500 2000 2500 0 1000 1100 1200 1300 1400 4 ( ) Hopf HBSN (, c) [14] ( ) [14] 3.3 Hopf Hopf Hopf 205.612 < < 1333.41 STNN [15, 16] c = 0 Hopf 5 5 = 1200 = 1200 6 (, c) 2 Hopf 7 c Hopf 61

No.1 (2016) 4 3 dh 1 /dt 2 1 0 0 500 1000 1500 2000 2500 SE UE SC UC 5 Hopf 4 AUTO STNN c = 0 Hopf Hopf c 0 (, c) Hopf c > 1.955 Hopf (, c) = (1019.23, 0.6664) c > 0.6664 Hopf Hopf Hopf MIMS JSPS (B)(No. 25790099, No. 15K17594) 62

(, ) (a) 2 (b) 3 6 (c) 4 (d) 5 Hopf (c = 0) [1] (1989) [2] (2008). [3] D. Chowdhury,. Santen, and A. Schadschneider, Phys. Rep. 329, 199 (2000). [4] D. Helbing, Rev. Mod. Phys. 73, 1067 (2001). [5] A. Schadschneider, D. Chowdhury, and K. Nishinari, Stochastic Transport in Complex Systems from Molecules to Vehicles (Elsevier, Amsterdam, 2010). [6] M. Bando, K. Hasebe, A. Nakayama, A. Shibata, and Y. Sugiyama, Phys. Rev. E 51, 1035 (1995). [7] Y. Sugiyama, M. Fukui, M. Kikuchi, K. Hasebe, A. Nakayama, K. Nishinari, S. Tadaki and S. Yukawa, New J. Phys. 10, 033001 (2008). [8] I. Gasser, G. Sirito, and B. Werner, Physica D 197, 222 (2004). 63

No.1 (2016) 2 HB 1.5 c 1 0.5 0 0 500 1000 1500 7 2 Hopf [9] G. Orosz, R. E. Wilson, and B. Krauskopf, Phys. Rev. E 70, 026207 (2004). [10] G. Orosz, B. Krauskopf, and R. E. Wilson, Physica D 211, 277 (2005). [11] G. Orosz and G. Stepan, Proc. R. Soc. A 462, 2643 (2006). [12] D. Shamoto, A. Tomoeda, R. Nishi, and K. Nishinari, Phys. Rev. E 83, 046105 (2011). [13] E. J. Doedel and B. E. Oldeman, Concordia University, Montreal, Canada (2012). [14] A. Tomoeda, T. Miyaji and K. Ikeda, Proceedings of Traffic and Granular Flow 15, Springer (to appear). [15] E. Tomer,. Safonov and S. Havlin, Phys. Rev. ett., 84, 382 (2000). [16] K. Nishinari and D. Takahashi, J. Phys. A: Math. Gen. 32, 93 (1999). (: 2016 1 6 ; : 2016 1 25 ) 64