JKR Point loading of an elastic half-space 2 3 Pressure applied to a circular region Boussinesq, n =

Similar documents
73

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

all.dvi

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )


応力とひずみ.ppt

( ) ( )

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + (

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,,

all.dvi

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

日本内科学会雑誌第102巻第4号

> > <., vs. > x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D > 0 x (2) D = 0 x (3

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

b3e2003.dvi

7-12.dvi

grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( )

TOP URL 1

,2,4

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

i

untitled

GJG160842_O.QXD

1

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y


II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

201711grade1ouyou.pdf

all.dvi

pdf

05Mar2001_tune.dvi

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

液晶の物理1:連続体理論(弾性,粘性)

(5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b)

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

TOP URL 1

2 1 1 α = a + bi(a, b R) α (conjugate) α = a bi α (absolute value) α = a 2 + b 2 α (norm) N(α) = a 2 + b 2 = αα = α 2 α (spure) (trace) 1 1. a R aα =

KENZOU Karman) x

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (


ac b 0 r = r a 0 b 0 y 0 cy 0 ac b 0 f(, y) = a + by + cy ac b = 0 1 ac b = 0 z = f(, y) f(, y) 1 a, b, c 0 a 0 f(, y) = a ( ( + b ) ) a y ac b + a y

2009 I 2 II III 14, 15, α β α β l 0 l l l l γ (1) γ = αβ (2) α β n n cos 2k n n π sin 2k n π k=1 k=1 3. a 0, a 1,..., a n α a

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

meiji_resume_1.PDF

A

A

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

( ) x y f(x, y) = ax

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

ẍ = kx, (k > ) (.) x x(t) = A cos(ωt + α) (.). d/ = D. d dt x + k ( x = D + k ) ( ) ( ) k k x = D + i D i x =... ( ) k D + i x = or ( ) k D i x =.. k.

1.1 1 A

i 18 2H 2 + O 2 2H 2 + ( ) 3K

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

4 Mindlin -Reissner 4 δ T T T εσdω= δ ubdω+ δ utd Γ Ω Ω Γ T εσ (1.1) ε σ u b t 3 σ ε. u T T T = = = { σx σ y σ z τxy τ yz τzx} { εx εy εz γ xy γ yz γ

The Physics of Atmospheres CAPTER :


さくらの個別指導 ( さくら教育研究所 ) 1 φ = φ 1 : φ [ ] a [ ] 1 a : b a b b(a + b) b a 2 a 2 = b(a + b). b 2 ( a b ) 2 = a b a/b X 2 X 1 = 0 a/b > 0 2 a

tnbp59-21_Web:P2/ky132379509610002944

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

TOP URL 1

dvipsj.8449.dvi

6.1 (P (P (P (P (P (P (, P (, P.

chap9.dvi

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)


2.4 ( ) ( B ) A B F (1) W = B A F dr. A F q dr f(x,y,z) A B Γ( ) Minoru TANAKA (Osaka Univ.) I(2011), Sec p. 1/30

Note.tex 2008/09/19( )

日本内科学会雑誌第98巻第4号

日本内科学会雑誌第97巻第7号

l µ l µ l 0 (1, x r, y r, z r ) 1 r (1, x r, y r, z r ) l µ g µν η µν 2ml µ l ν 1 2m r 2mx r 2 2my r 2 2mz r 2 2mx r 2 1 2mx2 2mxy 2mxz 2my r 2mz 2 r


y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e


I

Transcription:

JKR 17 9 15 1 Point loading of an elastic half-space Pressure applied to a circular region 4.1 Boussinesq, n = 1.............................. 4. Hertz, n = 1.................................. 6 4 Hertz : (normal contact of elastic solids) 7 5 (JKR ) 1 5.1............................................. 1 5...................................... 17 5.................................. 19 1

1 R 1, R E 1, E ν 1, ν a F δ Hertz H. Hertz (Hertz, 1881) Hertz (adhesion γ ) JKR Johnson, Kendall, and Roberts (1971) JKR JKR Johnson (1987) Hertz JKR JKR Johnson et al.(1971) Chokshi et al.(199) Point loading of an elastic half-space 1: Johnson(1987) Fig.. ( E ν) xy z O P 1 Hooke Johnson (1987)

ρ = x + y + z r = x + y σ x = σ y = [ P (1 ν) π r [ (1 ν) P π z r {( 1 z ) x y ρ r ) y x {( 1 z ρ r + zy ρ + zx ρ } ] zx ρ 5 } ] zy ρ 5 (.1) (.) σ z = P (.) π ρ [ 5 {( P (1 ν) τ xy = 1 z ) xy π r ρ r xyz } xyz ] (.4) ρ ρ 5 τ xz = P xz (.5) π ρ 5 τ yz = P yz (.6) π ρ 5 { } (1 + ν)p xz x u x = (1 ν) (.7) πe ρ ρ(ρ + z) { } (1 + ν)p yz y u y = (1 ν) (.8) πe ρ ρ(ρ + z) u z = (1 + ν)p πe { z (1 ν) + ρ ρ z (r, θ, z) { ( P 1 σ r = (1 ν) π r z ) } zr ρr ρ 5 σ θ = P ( 1 π (1 ν) r z ρr z ) ρ } (.9) (.1) (.11) σ z = P z (.1) π ρ 5 τ rz = P rz (.1) π ρ 5 { } (1 + ν)p rz z u r = (1 ν)ρ (.14) πe ρ ρr u z = (1 + ν)p πe { z (1 ν) + ρ ρ (z = ) ū r, ū z (.14)(.15) } (.15) (1 + ν)(1 ν) ū r = πe ū z = 1 ν πe P r P r (.16) (.17)

Pressure applied to a circular region C(ξ, η) p C B(x, y) z (.17) ū z (x, y) = 1 ν πe psdsdφ s = 1 ν pdsdφ (.1) πe s B C s (ξ x) + (η y) φ B C : Johnson(1987) Fig..1 S p(x, y) B(x, y) z ū z (x, y) = 1 ν πe S p(s, φ)dsdφ (.) S a ( ) n p(r) = p 1 r (.) a r = x + y p n n = ± 1.1 Boussinesq, n = 1 ( ) 1 p = p 1 r a a S ū z r Uniform normal displacement Boussinesq (.) ū z (.4) 4

: Johnson(1987) Fig..5 (a) B(r, ) ū z (S r < a) C t t = r + s rs cos(π φ) = r + s + rs cos φ (.5) C p(s, φ) p(s, φ) = p a ( a t ) 1 = p a ( a r rs cos φ s ) 1 = p a ( α βs s ) 1 (.6) α a r, β r cos φ p(s, φ) (.) ū z (r) = 1 ν πe p a π dφ s1 ds ( α βs s ) 1 s 1 (a) B B t = a s α βs s = s 1 = β + β + α (.8) dx ax + bx + c = 1 a arcsin ax + b (a < ) (.9) b 4ac (.7) s s1 ds ( α βs s ) 1 = arcsin s β β + α = π arctan ( β α ) s 1 β = arcsin( 1) + arcsin β + α (.7) (.1) 5

β(φ) = r cos φ β(φ + π) = β(φ). arctan ( ) ( β(φ+π) α = arctan β(φ) ) α arctan ( ) β(φ) α φ [, π] (.7) π { ( )} π β(φ) [ π ] π dφ arctan = α φ = π (.11) (.7) ū z ū z r ū z = 1 ν πe p a π = 1 ν E πap (.1) S F F = a ( ) 1 p 1 r πrdr = πa p a (.1) (.1)(.1) p ū z F ū z = 1 ν ae F (.14) B S (b) p(s, φ) = p a ( α + βs s ) 1 (.15) ū z (r > a) ū z (r) = 1 ν πe p a = 1 ν πe p a φ s dφ φ 1 arcsin( a r ) s 1 ds ( α + βs s ) 1 arcsin( a r ) πdφ = (1 ν ) E ( a ) ap arcsin r (.16) r = a (.1) Boussinesq Boussinesq. Hertz, n = 1 ( ) 1 p = p 1 r a (.17) Hertz Boussinesq B(r, ) z ū z ū z (r) = 1 ν πe p a π dφ s1 ds ( α βs s ) 1 (.18) 6

ax + bx + cdx = ax + b 4a ax + bx + c b 4ac 8a dx ax + bx + c (.19) (.9) (.18) s s1 ds ( [ α βs s ) ] 1 s1 s + β = α βs s + β + α { π ( β α)} arctan = 1 αβ + 1 ( α + β ) { π ( β α)} arctan (.) β(φ + π) = β(φ) αβ arctan ( β α) φ [, π] (.18) π π 4 ( α + β ) dφ = π 4 π ( a r + r cos φ ) dφ = π 4 ( a r ) (.1) ū z ū z (r) = 1 ν E πp 4a ( a r ) (.) S F p m F = a ( ) 1 p 1 r πrdr = a πa p (.) p m F πa = p (.4) 4 Hertz : (normal contact of elastic solids) Hertz R 1, R δ 1, δ δ = δ 1 + δ a F δ, a, F xy z 4 Hertz (non-conforming) a R a R a R, a l. l 7

4: Johnson(1987) Fig.4. 8

r = x + y r R 1, z 1 = 1 R 1 r, z = 1 R r (4.1) r z ū z1, ū z R 1 R = 1 R 1 + 1 R ū z1 + ū z = δ (z 1 + z ) (4.) ū z1 + ū z = δ 1 R r (4.) ū z1, ū z (4.) ū z1, ū z Hertz p(r) = p 1 r a (4.4) Landau and Lifshitz (.) (4.) ū z1 + ū z = 1 ν 1 + 1 ν πp E 1 4a E ( a r ) = 1 E πp 4a ( a r ) (4.5) (?) 1 E 1 ν 1 E 1 + 1 ν E (4.) : πp 4aE ( a r ) = δ 1 R r (4.6) r Hertz (4.4) r r πp 4aE = 1 R πap E = δ (4.8) F (.) p F a (4.7)(4.8) p = (4.7) F πa (4.9) ( ) 1 F = 4E R R a a = 4E F (4.1) 9

( δ = a R = p = 9F 16E R ) 1 F πa = ae πr = F = 4E ( 6E F π R (4.1)(4.11)(4.1) Hertz ) 1 Rδ (4.11) (4.1) (4.4) Hertz (4.) p = p (1 r a ) 1 (4.1) Boussiesq p > p < Hertz Boussiesq p = p 1 r a = F 1 r πa a = ae 1 r (4.14) πr a 5 σ r 1

5: Johnson(1987) Fig.4. 11

5 (JKR ) Hertz 5.1 ū z1 + ū z = δ 1 R r (5.1) Hertz Boussinesq ( ) 1 p = p H 1 r a + pb (1 r p B < Boussinesq ū z (.1) (5.1) a ) 1 (5.) πp H 4aE ( a r ) + πap B E = δ 1 R r (5.) Hertz r p H = ae πr (5.4) δ = πa E (p H + p B ) (5.5) F a ( ) F = pπrdr = p H + p B πa (5.6) p H (a) p B (a) p B U E a = a 1 δ = δ 1. Hertz a = a 1 δ = δ 1 U 1. a = a 1 δ = δ Boussinesq (p B < ) Boussinesq a = a 1 δ U 1

1. Hertz U 1 = = δ1 F = πa p H = 4E R a (5.7) Fdδ = 8 E 15 R a 1 δ = a R a1 4E a R a R da = 8 E 15 R a5 1 ( πr E p H1) = 15 (5.8) π a 1 E p H1 (5.9) p H1 p H (a 1 ) = a 1E πr. (.1)(.1) F = F 1 + πa 1 p B1 (5.1) δ = δ 1 + πa 1 E p B1 (5.11) F 1 1. δ = δ 1 p B1 p B (a 1 ) (5.1)(5.11) p B1 F 1 = πa 1 p H1 (5.1) F = a 1 E (δ δ 1 ) + F 1 (5.1) (5.1) U = δ δ 1 Fdδ = F F = F 1 + πa 1 p B1 = U = π a 1 E F 1 F df a 1 E = F F 1 4a 1 E (5.14) ( ) p H1 + p B1 πa 1 (5.15) ( ) p H1 p B1 + p B1 (5.16) U E a 1, p H1, p B1 a, p H, p B U E = U 1 + U = π a ( E 15 p H + ) p H p B + p B (5.17) δ a U E ( ) UE a δ (5.18) 1

δ δ (5.5) p B = E πa δ p H = E πa δ ae πr U E (5.17) (5.4) U E = π a ( ) 1 ae E E ( δ E ) 5 πr π R + δ πa (5.19) (5.) ( ) UE a δ = π a E ( ae πr ) E δ π R + ( E ) δ πa = π a ( ) ae E πr E δ πa = π a E p B (5.1) U T (5.1)(5.) ( UT a ( ) U T a = δ π a p B (< ) U S = γπa (5.) U T = U E + U S (5.) ) δ = π a E p B 4γπa (5.4) E p B = 4γπa (5.5) p B = 4γE πa (5.6) p B p H (5.4) (5.6) F a F = ( ) p H + p B πa = 4E R a πa 4γE πa = 4E R a 16πγE a (5.7) a x = a x a = R { } 4E F + 6πγR + 1πγRF + (6πγR) (5.8) ( 6) γ = Hertz 14

6: Johnson(1987) Fig.5.8 F = a = a (5.8) ( 9πγR a = E ) 1 (5.9) a F a < a F F ( ) F F = F c, (F c > ) F a = F c 1 a = a s F c = πγr (5.) ( ) 1 9πγR a s = = 4 1 4E a =.6a (5.1) F c F c R γ a a s δ δ < a ( 9) a < a s F < F c F c a a s F c 1 (5.8) 1πγRF + (6πγR) F πγr 15

δ (5.5) p B (5.6) p H (5.4) πa δ = E (p H + p B ) = a 4πγa R E = a 4πγR R 1 E a = a R 1 4πγR E 1 a ( a ) a (5.) a (5.9) δ = a R 1 ( a a ) (5.) a = a δ δ δ = a R (5.4) 7 7: Johnson(1987) Fig.5.9 16

5. a, F, δ a, F c, δ (5.7)(5.8)(5.) (5.8) a (5.9) ( ) a 1 = 1πγR a { } F + 6πγR + 1πγRF + (6πγR) = 1 4 F πγr + + 4F πγr + 4 (5.5) F F c ( ) a = 1 F + + 1 + F 4 F c F c a ( F a = 4 F c (5.) (5.4) ( δ a = δ a a ) ( a a ) ) ( ) 1 a a (5.6) (5.7) (5.8) δ δ a a ( 9) δ < a a a δ δ δ c (δ c > ) δ = δ c (5.8) d(δ/δ ) d(a/a ) = a a = ( 1 6 ) (5.9) a c ( ) 1 a c = a =.a (< a s =.6a ) (5.4) 6 a = a s a = a c δ (5.8) a c δ δ = δ c = ( ) 4 ( ) 1 1 1 = 6 6 ( ) 1 1 δ =.85δ = 1 6 δ c δ(a) (5.) ( ) δ = 6 1 a δ c 4 ( a a a = a c (or δ = δ c ) ( ) F 1 = 4 F c 6 ( ) 1 1 =.85 (5.41) 6 a ( ) 1 1 a 6 R ) 1 (5.4) (5.4) ( ) 1 6 = 5 =.556 (5.44) 9 a, F, δ 8, 9 17

8: JKR F F c a a 9: JKR δ F F c a a δ δ δ δ c 18

5. U S U E U T F c δ c U S U T U T F c δ c = U S F c δ c = γπa πγr 1 ( 1 6)1 a R ) ( δ d ( 1 F Fdδ = F c δ c F c ( ) ( ) a a = 4 a a 6 1 ( ) 5 = 6 1 8 a 8 ( a 5 a a ( ) 4 = 6 1 a (5.45) a δ c ) 4 ( a a ) ) 7 ( ) a + a ( a a ) 1 ( ) a d a (5.46) U E U E U T = U S F c δ c F c δ c F c δ c ( = 6 1 8 a 5 a ) 5 8 ( ) 7 ( ) a 4 a + a a (5.47) U E F c δ c, U S F c δ c, U T F c δ c δ δ c 1 (δ = δ c ) U T > U T U T F c δ c = U T δ δc =1 F c δ c = 4 =.9 (5.48) a a =( 1 6) 45 U K U K > 4 45 F cδ c =.9F c δ c (5.49) 4 45 F cδ c a = ( ε ε = ) a =.76a U K 4 45 F cδ c = 1 U K 4 45 F cδ c U K (5.5) 1 ( ) 4 δ = δ = δc = 1.1δ c (5.51) 19

U T U T = 4 5 6 1 Fc δ c = 1.45F c δ c (5.5) 4 5 6 1 Fc δ c + 4 45 F cδ c = (1.45 +.9)F c δ c = 1.54F c δ c (5.5) F c δ c F c δ c = πγr 1 ( ) 1 1 6 ( 9πγR E ) ( ) 4 1 1 R = 9 5 γ 5 R 4 π E = 4.7 γ 5 R 4 E (5.54)

1: U E F c δ c U S F c δ c U T F c δ c δ δ c 1