proc.dvi

Similar documents
Title 絶対温度 <0となり得る点渦系の平衡分布の特性 ( オイラー方程式の数理 : 渦運動 150 年 ) Author(s) 八柳, 祐一 Citation 数理解析研究所講究録 (2009), 1642: Issue Date URL

ms.dvi

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

プログラム

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

日本内科学会雑誌第98巻第4号

日本内科学会雑誌第97巻第7号

tnbp59-21_Web:P2/ky132379509610002944

2016 ǯ¥Î¡¼¥Ù¥ëʪÍý³Ø¾Þ²òÀ⥻¥ß¥Ê¡¼ Kosterlitz-Thouless ž°Ü¤È Haldane ͽÁÛ

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

本文/目次(裏白)

TOP URL 1

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

DVIOUT-fujin

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

ʪ¼Á¤Î¥È¥Ý¥í¥¸¥«¥ë¸½¾Ý (2016ǯ¥Î¡¼¥Ù¥ë¾Þ¤Ë´ØÏ¢¤·¤Æ)

TOP URL 1

QMII_10.dvi

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1)

Onsager SOLUTION OF THE EIGENWERT PROBLEM (O-29) V = e H A e H B λ max Z 2 Onsager (O-77) (O-82) (O-83) Kramers-Wannier 1 1 Ons

Korteweg-de Vries

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

Gmech08.dvi

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

( ) ) AGD 2) 7) 1

Ł\”ƒ-2005

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =

第90回日本感染症学会学術講演会抄録(I)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

薄膜結晶成長の基礎3.dvi

nsg04-28/ky208684356100043077

1: Sheldon L. Glashow (Ouroboros) [1] 1 v(r) u(r, r ) ( e 2 / r r ) H 2 [2] H = ( dr ψ σ + (r) 1 2 ) σ 2m r 2 + v(r) µ ψ σ (r) + 1 dr dr ψ σ + (r)ψ +

2000年度『数学展望 I』講義録

日本内科学会雑誌第102巻第4号

Radiation from moving charges#1 Liénard-Wiechert potential Yuji Chinone 1 Maxwell Maxwell MKS E (x, t) + B (x, t) t = 0 (1) B (x, t) = 0 (2) B (x, t)


No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

O1-1 O1-2 O1-3 O1-4 O1-5 O1-6

Untitled

a L = Ψ éiγ c pa qaa mc ù êë ( - )- úû Ψ 1 Ψ 4 γ a a 0, 1,, 3 {γ a, γ b } η ab æi O ö æo ö β, σ = ço I α = è - ø çèσ O ø γ 0 x iβ γ i x iβα i

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

untitled

( ) ( )

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

プリント

Chap11.dvi

TOP URL 1

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

放射線専門医認定試験(2009・20回)/HOHS‐05(基礎二次)

プログラム

, 1.,,,.,., (Lin, 1955).,.,.,.,. f, 2,. main.tex 2011/08/13( )

08-Note2-web


.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

,, Andrej Gendiar (Density Matrix Renormalization Group, DMRG) 1 10 S.R. White [1, 2] 2 DMRG ( ) [3, 2] DMRG Baxter [4, 5] 2 Ising 2 1 Ising 1 1 Ising


1. ( ) L L L Navier-Stokes η L/η η r L( ) r [1] r u r ( ) r Sq u (r) u q r r ζ(q) (1) ζ(q) u r (1) ( ) Kolmogorov, Obukov [2, 1] ɛ r r u r r 1 3

1 1 u m (t) u m () exp [ (cπm + (πm κ)t (5). u m (), U(x, ) f(x) m,, (4) U(x, t) Re u k () u m () [ u k () exp(πkx), u k () exp(πkx). f(x) exp[ πmxdx

d (i) (ii) 1 Georges[2] Maier [3] [1] ω = 0 1


62 Serre Abel-Jacob Serre Jacob Jacob Jacob k Jacob Jac(X) X g X (g) X (g) Zarsk [Wel] [Ml] [BLR] [Ser] Jacob ( ) 2 Jacob Pcard 2.1 X g ( C ) X n P P

untitled

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

Kroneher Levi-Civita 1 i = j δ i j = i j 1 if i jk is an even permutation of 1,2,3. ε i jk = 1 if i jk is an odd permutation of 1,2,3. otherwise. 3 4

05Mar2001_tune.dvi

Black-Scholes [1] Nelson [2] Schrödinger 1 Black Scholes [1] Black-Scholes Nelson [2][3][4] Schrödinger Nelson Parisi Wu [5] Nelson Parisi-W

タイトル

30

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

untitled

x E E E e i ω = t + ikx 0 k λ λ 2π k 2π/λ k ω/v v n v c/n k = nω c c ω/2π λ k 2πn/λ 2π/(λ/n) κ n n κ N n iκ k = Nω c iωt + inωx c iωt + i( n+ iκ ) ωx

IA

eto-vol2.prepri.dvi

1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l

gr09.dvi

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2

E 1/2 3/ () +3/2 +3/ () +1/2 +1/ / E [1] B (3.2) F E 4.1 y x E = (E x,, ) j y 4.1 E int = (, E y, ) j y = (Hall ef

A

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

第1章 微分方程式と近似解法

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i


.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

SO(2)

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

( ) s n (n = 0, 1,...) n n = δ nn n n = I n=0 ψ = n C n n (1) C n = n ψ α = e 1 2 α 2 n=0 α, β α n n! n (2) β α = e 1 2 α 2 1

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

Transcription:

Equlbrum dstrbuton of two-dmensonal pont vortces at postve and negatve absolute temperature ( < 0 ) Yuch YATSUYANAGI Faculty of Educaton, Shzuoka Unversty 1 Onsager 1949 2 [1] Onsager Boltzmann exp( βe) β [2] Larmor 0 2 Euler [3,4] [3,5,6] [7] 1

http://r.lb.shzuoka.ac.jp/ 2 [8] 2 ω(r) t = (u(r) )ω(r) (1) Drac ψ(r) u(r) ω(r) z x y ψ(r) = Γ G(r r )= 1 2π u(r) = (ψ(r)ẑ) = 1 2π ω(r) = (ψ(r)ẑ) = Γ ln r r, (2) Γ ẑ ln r r = 1 ẑ (r r ) Γ (3) 2π r r 2 Γ δ(r r )ẑ (4) G(r) 2 Posson Green [9] r Γ ẑ z N (4) (1) ( ) Γ t r u(r) δ(r r )=0 (5) k r = r k ɛ [ N ( ) ] [ ( ) ] Γ t r u(r) δ(r r ) = Γ k t r k u(r k ) δ(r k r k ) =0 r k k t r k = u(r k )= 1 2π r k k (6) Γ ẑ (r k r ) r k r 2 (7) Bot-Savart (7) k r = r k 2

H I H = 1 Γ Γ j ln r r j 4π j (8) I = Γ r 2 (9) k r k =(x k,y k ) (7) (8) Γ k dx k dt = H y k, Γ k dy k dt = H x k (10) N/2 Γ 0 (> 0 ) ( ) N/2 Γ 0 ( ) R N 6724 H I H H = 1 4π j Γ Γ j ln r r j + 1 4π j Γ Γ j ln r r j 1 4π j Γ Γ j ln R r j, (11) r = R 2 r / r 2 (11) [8] (11) 3 k (11) (10) Bot-Savart t r k = 1 2π k Γ ẑ (r k r ) r k r 2 1 2π Γ ẑ (r k r ) r k r 2 (12) (12) (12) N 6000 12000 PC (2008 12 ) CPU (Core 2 Quad Q9550 ) 2 CPU (Pentum4 660 3.6GHz) 300 Vortex-In-Cell Tree code MDGRAPE-2 3

MDGRAPE-3 Bot-Savart 12000 400 20 [4, 10] 1: MDGRAPE-3 PC PCI-X Bot- Savart 3 T S E 1 T = S E = k ln W (E) B E (13) Boltzmann S = k B ln W (E) W (E) T W (E)dE (14) W (E) E W (E) 0 E 0 E >E 0 W (E) E >E 0 (13) (13) Onsager 1949 [1] (10) Onsager (x, y) A ( dω = ) N dxdy = A N (15) 4

W(E) W(E) β > 0 β < 0 E E0 E (a) 2: E W (E) 0 W (E) E 0 E >E 0 4 [4, 11] 4.1 ( ) (12) 3 3 ( ) 2 dpole 5

3: dpole 1 1 4 d ( 5 2 ) 1/2 R Emax Emax Emax dstance d d 4: 1 1 2 d d = ( 5 2 ) 1/2 R 5 2 2 6

5: 2 6 7 (plus-plus PP ) (plus-mnus PM ) 6: 2 1 ( 6) PP PM 6 1 ( 7) 7 PM PP R PM R 2 5 8 8 5 2 PP PM 7

7: 2 8: 2 2 5 2 5 6 7 8

PP PM 9 9: 0 5 0 9 β ν [12] H I (9) (11) 1 H +1 I +1 exp( βh +1 +νi +1 ) > exp( βh +νi ) +1 0 1 α exp ( β(h +1 H )+ν(i +1 I )) >α (16) +1 +1 10 ν β β β ν 9

10: 10 3 10 5 β 5 4.2 [13, 14] E(k) = 1 4πk 1 2πk + 1 2πk Γ 2 + 1 Γ Γ j J 0 (k r r j ) 4πk j ( ) l rj Γ Γ j ɛ l J l (kr)j l (k r )cos(l(ϕ ϕ j )) j l=0 R ( ) l rj Γ Γ j ɛ l Jl 2 (kr)cos(l(ϕ ϕ j )) (17) j l=0 R { 1 l =0, ɛ l = (18) 2 l 1, x = r cos(ϕ ), y = r sn(ϕ ). (19) 10

(17) 1 2 Novkov (17) 11 11: ( ) 12 E =8.51 10 3 1 12: 2 12 1 11

11 1 ( 12 10 1 ) 2 12 2 2 13 13: 2 2 1 2 ( ) 11 E =24.1 5 ( ) E = 15.9 ( ) (17) 1 Γ Γ j > 0 Γ Γ j < 0 1 1 1 11 12

5 exp( βe) β Montgomery snh-posson [15] MDGRAPE-3 [1] L. Onsager: Nuovo Cmento Suppl. 6 (1949) 279. [2] G. L. EynkandK. R. Sreenvasan: Rev. Mod. Phys. 78 (2006) 87. [3] : 56 (2001) 253. [4] : 27 (2008) 23. [5] Y. Kwamoto, N. Hashzume, Y. Soga, J. Aok, and Y. Kawa: Phys. Rev. Lett. 99 (2007) 115002. [6] Y. Yatsuyanag, Y. Kwamoto, T. Ebsuzak, T. Hator, and T. Kato: Phys. Plasmas 10 (2003) 3188. [7] Y. Yatsuyanag,, T. Ebsuzak, T. Hator, and T. Kato: Phys. Plasmas 10 (2003) 3181. [8] P. K. Newton: The N-Vortex Problem (Sprnger-Verlag, Berln, 2001) chapter 1-3. [9] : (,, 1978). [10] http://www.peta.co.jp. [11] Y. Yatsuyanag, Y. Kwamoto, H. Tomta, M. M. Sano, T. Yoshda, and T. Ebsuzak: Phys. Rev. Lett. 94 (2005) 054502. 13

[12] : (,, 1997) chapter 3. [13] T. Yoshda and M. M. Sano: J. Phys. Soc. Jpn. 74 (2005) 587. [14] E. A. Novkov: Sov. Phys. JETP, 41 (1975) 937. [15] G. Joyce and D. Montgomery: J. Plasma Phys. 10 (1973) 107. 14