IIC Proposal of Range Extension Control System by Drive and Regeneration Distribution Based on Efficiency Characteristic of Motors for Electric

Similar documents
2 1) 2) 3) 4) 5) 6) Development of Second Generation Wireless In-Wheel Motor with Dynamic Wireless Power Transfer Hiroshi Fujimoto Takuma Takeuchi Kat

Proposal of Driving Torque Control Method for Electric Vehicle with In-Wheel Motors Masataka Yoshimura (Yokohama National University) Hiroshi Fujimoto

Table 1. Reluctance equalization design. Fig. 2. Voltage vector of LSynRM. Fig. 4. Analytical model. Table 2. Specifications of analytical models. Fig


Fig. 1 Schematic construction of a PWS vehicle Fig. 2 Main power circuit of an inverter system for two motors drive

No EV 26 Development of Crash Safety Performance for EV Ichiro Kamimoto Masaki Motoki Masaki Ueno SKYACTIV engine HEV Hybrid Electric Ve

alternating current component and two transient components. Both transient components are direct currents at starting of the motor and are sinusoidal

Synthesis and Development of Electric Active Stabilizer Suspension System Shuuichi BUMA*6, Yasuhiro OOKUMA, Akiya TANEDA, Katsumi SUZUKI, Jae-Sung CHO

MD ,RM ,VT Aircraft Yaw-rate Suppression Method Using Driving Force Control by Electrically Driven Wheel for One-wheel Landing Tosh


EQUIVALENT TRANSFORMATION TECHNIQUE FOR ISLANDING DETECTION METHODS OF SYNCHRONOUS GENERATOR -REACTIVE POWER PERTURBATION METHODS USING AVR OR SVC- Ju


F yr F yf l r γ r γ β l f γ δ f Y X Fig.3 Bicycle model of vehicle dynamics. Table. ehicle specification. ehicle mass M 854 kg Wheelbase l.7 m Distanc

kiyo5_1-masuzawa.indd

Instability of Aerostatic Journal Bearings with Porous Floating Bush at High Speeds Masaaki MIYATAKE *4, Shigeka YOSHIMOTO, Tomoaki CHIBA and Akira CH

Table 1. Assumed performance of a water electrol ysis plant. Fig. 1. Structure of a proposed power generation system utilizing waste heat from factori

CT Study of Minimum Collision Avoidance Distance for Electric Vehicles with Four Wheel Independent Driving and Active Front and Rear Steering D

š ( š ) ,148,770 3,147,082 1, ,260 1,688 1,688 10,850 10, , ,

IIC , MEC 電気自動車におけるロールおよびピッチモーメントオブザーバを 用いた規範モデル追従制御 落直哉 藤本博志 堀洋一 東京大学 Model Following Control with Roll and Pitch Moment Observer for El

Development and Field Test of a Portable Camera System for Long Term Observation of Natural Dam Ken AKIYAMA (Tohoku Univ.), Genki YAMAUCHI (Tohoku Uni

A Study on Throw Simulation for Baseball Pitching Machine with Rollers and Its Optimization Shinobu SAKAI*5, Yuichiro KITAGAWA, Ryo KANAI and Juhachi

[2] OCR [3], [4] [5] [6] [4], [7] [8], [9] 1 [10] Fig. 1 Current arrangement and size of ruby. 2 Fig. 2 Typography combined with printing

& Vol.5 No (Oct. 2015) TV 1,2,a) , Augmented TV TV AR Augmented Reality 3DCG TV Estimation of TV Screen Position and Ro

EV Fig.. Contactless power transfer system. (a) Single-sided winding transformer. Fig. 2. Detailed equivalent circuit. x 0, x, x 2 r 0 r, r 2 C P R L

<96D889BA904D2E696E6464>



yasi10.dvi

Studies of Foot Form for Footwear Design (Part 9) : Characteristics of the Foot Form of Young and Elder Women Based on their Sizes of Ball Joint Girth

17 Proposal of an Algorithm of Image Extraction and Research on Improvement of a Man-machine Interface of Food Intake Measuring System

Vol.53 No (July 2012) EV ITS 1,a) , EV 1 EV ITS EV ITS EV EV EV Development and Evaluation of ITS Information Commu

JFE(和文)No.4-12_下版Gのコピー

130 Oct Radial Basis Function RBF Efficient Market Hypothesis Fama ) 4) 1 Fig. 1 Utility function. 2 Fig. 2 Value function. (1) (2)

Vol.1 No Autumn

/ Motor Specifications Direct Motor Drive Ball Screws / Precision Ball Screw type MB / MB MB Precision Ball Screw type MB / MoBo C3 5 5 Features A 5-p

4.1 % 7.5 %

官報(号外第196号)

ICS-01B-◇◇◇

JAふじかわNo43_ indd





258 5) GPS 1 GPS 6) GPS DP 7) 8) 10) GPS GPS ) GPS Global Positioning System

Table 1 Experimental conditions Fig. 1 Belt sanded surface model Table 2 Factor loadings of final varimax criterion 5 6

1 Fig. 1 Extraction of motion,.,,, 4,,, 3., 1, 2. 2.,. CHLAC,. 2.1,. (256 ).,., CHLAC. CHLAC, HLAC. 2.3 (HLAC ) r,.,. HLAC. N. 2 HLAC Fig. 2

第62巻 第1号 平成24年4月/石こうを用いた木材ペレット

Development of Induction and Exhaust Systems for Third-Era Honda Formula One Engines Induction and exhaust systems determine the amount of air intake

š ( š ) (6) 11,310, (3) 34,146, (2) 3,284, (1) 1,583, (1) 6,924, (1) 1,549, (3) 15,2


Journal of Geography 116 (6) Configuration of Rapid Digital Mapping System Using Tablet PC and its Application to Obtaining Ground Truth

untitled

エジプト、アブ・シール南丘陵頂部・石造建造物のロータス柱の建造方法

浜松医科大学紀要

日歯雑誌(H19・5月号)済/P6‐16 クリニカル  柿木 5


原稿.indd


植物23巻2号

<8B5A8F70985F95B632936EE7B22E696E6464>

On the Wireless Beam of Short Electric Waves. (VII) (A New Electric Wave Projector.) By S. UDA, Member (Tohoku Imperial University.) Abstract. A new e

,,.,.,,.,.,.,.,,.,..,,,, i


Direct Motor Drive Lead Screws / Resin Lead Screw type RM / RM RM Resin Lead Screw type RM / Resin MoBo 2 MRH 2 Features A 2-phase Stepping Motor is m

Abstract This paper concerns with a method of dynamic image cognition. Our image cognition method has two distinguished features. One is that the imag

System to Diagnosis Concrete Deterioration with Spectroscopic Analysis IHI IHI IHI The most popular method for inspecting concrete structures for dete

GPGPU

Fig. 1. Relation between magnetron anode current and anode-cathod voltage. Fig. 2. Inverter circuit for driving a magnetron. 448 T. IEE Japan, Vol. 11

bosai-2002.dvi

1 Web [2] Web [3] [4] [5], [6] [7] [8] S.W. [9] 3. MeetingShelf Web MeetingShelf MeetingShelf (1) (2) (3) (4) (5) Web MeetingShelf

p1_5.pmd

320_…X…e†Q“õ‹øfiÁ’F

1 I/F I/F 1 6) MobileIP 7) 8) MN: Monile Node MN AR Mobility Anchor Point(MAP) MobileIP HMIP HMIP HA-MAP MN MAP MN MAP HMIP MAP MN 2 MobileIP Mo

2. CABAC CABAC CABAC 1 1 CABAC Figure 1 Overview of CABAC 2 DCT 2 0/ /1 CABAC [3] 3. 2 値化部 コンテキスト計算部 2 値算術符号化部 CABAC CABAC

untitled

PDF変換用(報告書)帯広市新エネルギービジョ

先端社会研究 ★5★号/4.山崎

IPSJ SIG Technical Report Secret Tap Secret Tap Secret Flick 1 An Examination of Icon-based User Authentication Method Using Flick Input for

untitled

Q [4] 2. [3] [5] ϵ- Q Q CO CO [4] Q Q [1] i = X ln n i + C (1) n i i n n i i i n i = n X i i C exploration exploitation [4] Q Q Q ϵ 1 ϵ 3. [3] [5] [4]

K02LE indd

EV Toshio Hirota, Environmental Research Institute, Waseda University, Japan 2

(a) 1 (b) 3. Gilbert Pernicka[2] Treibitz Schechner[3] Narasimhan [4] Kim [5] Nayar [6] [7][8][9] 2. X X X [10] [11] L L t L s L = L t + L s

untitled

Microsoft PowerPoint - TMSパネル原稿(ファイナル) pptx

untitled

<95DB8C9288E397C389C88A E696E6462>


No SKYACTIV TECHNOLOGY 8 Development of the i-eloop Masayoshi Takahashi Tatsurou Takahashi Yoshimasa Kitaki Takeharu Yamashita Hir

149 (Newell [5]) Newell [5], [1], [1], [11] Li,Ryu, and Song [2], [11] Li,Ryu, and Song [2], [1] 1) 2) ( ) ( ) 3) T : 2 a : 3 a 1 :

抜刷表紙/芦塚 〃 嶋崎 芦塚

Vol.54 No (July 2013) [9] [10] [11] [12], [13] 1 Fig. 1 Flowchart of the proposed system. c 2013 Information

IPSJ SIG Technical Report Pitman-Yor 1 1 Pitman-Yor n-gram A proposal of the melody generation method using hierarchical pitman-yor language model Aki

NGO HIV HIV 8, ,378 1,078 1,331 2,409 9,749 2,038 11,787 2, , ,118 2,344 1,352 3, , ,

1 UD Fig. 1 Concept of UD tourist information system. 1 ()KDDI UD 7) ) UD c 2010 Information Processing S

<303288C991BD946797C797592E696E6464>

Table 1 Properties of parent coals used Ebenezer, Massel Buluck ; Australia, Datong; China Table 2 Properties of Various chars CY char: Captured char

THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE.

1 1 tf-idf tf-idf i

Transcription:

IIC-1-19 Proposal of Range Extension Control System by Drive and Regeneration Distribution Based on Efficiency Characteristic of Motors for Electric Vehicle Toru Suzuki, Hiroshi Fujimoto (Yokohama National University) Abstract The effect of improvement of fuel efficiency with electric vehicles (EVs) is large. However, EVs have a disadvantage that the mileage per charge is not long. Technologies that improve the efficiency of inverters and motors are very effective to overcome the disadvantage. In this paper, the range extension control system (RECS) is proposed in which the total efficiency of vehicle is optimized by torque distribution to multiple motors. Moreover, simulations and experiments are carried out to verify the proposed system. (electric vehicle, motor efficiency, mileage per charge, torque distribution, range extension control system ) 1. 1 1 (1) Prius Insight 1 (2) (4) i-miev (5) CO 2 CO 2 [g/km] CO 2 1/4 1/3 (5) CO 2 (6) (12) (6) (7) (8) (9) (12) 1 2 (13) (14) (Range Extension Control System: RECS) (15) 2. 2 1 1/6

6% % 7% % 8% 6% % 7% % 8% % % (a) FPEV2-Kanon. 1 2 3 4 5 6 7 8 (a) Front Motor. Fig. 2. 2 1 2 3 4 5 6 7 8 (b) Rear Motor. Motor Efficiency Characteristics. Ì Ö ¼ Ì Ö ¼ Ì Ö (b) Front Motor. (c) Rear Motor. Fig. 1. 1 Experimental Vehicle. ¼ ¾Ì Ö ¼ ¾Ì Ö ¼ Ì Ö 1 Table 1. Specification of In-Wheel Motors. Front Rear Manufacturer TOYO DENKI SEIZO K.K. Type Direct Drive System Outer Rotor Type Rated Torque 11 [Nm] 137 [Nm] Maximum Toruque [Nm] 34 [Nm] Rated Power 6. [kw] 4.3 [kw] Maximum Power 2. [kw] 1.7 [kw] Rated Speed [rpm] 382 [rpm] Maximum Speed 1113 [rpm] 1 [rpm] FPEV2-Kanon FPEV2-Kanon 1 1 1 16 [V] 1 2 32 [V] 2 2 2 (a) Equal Distribution Type Fig. 3. 3 ¼ Ì Ö (b) Yaw Moment Cancellation Type Examples of Torque Distribution. 2 3. 3 1 3(a) 3(b) 2 (1) (3) γ T f, T r 2/6

Î È Á Ö È Î È Á Ö È 3 3 4(b) η all P r < È Ö Ö (a) Front Drive Rear Drive. 4 Fig. 4. È Ö Driving Pattern. Ö È Ö È Ö (b) Front Drive Rear Regeneration. T ref γ (4) T ref T f + T r (1) T f (1 γ) T ref (2) T r γt ref (3) T fl T fr + T rl T rr (4) T fl T fr T rl T rr T f T fl +T fr T r T rl +T rr γ P o T ref ω o (T f + T r) ω o (5) P f T f ω o (1 γ) T ref ω o (1 γ) P o (6) P r T r ω o γt ref ω o γp ref (7) P o P f P r ω o η all η all (8) 3 2 4(a) η all η all P f + P r P f + P r η r P ref (1 γ)p ref + γp ref η r η r (1 γ) η r + γ (9) η all P f + P r P f + η r P r (1 γ)p ref P ref + γη rp ref 1 γ + γ η r (1) 4. 4 1 2 γ 1.5 (9) (1) 5 γ γ 1 γ 1.5 1.5 5(f) 5(i) 2 5(a) 5(e) γ 5(f) 5(i) γ.4.9 γ.5 γ 1 γ.5 γ 4(b) 4 2 6 3/6

9 9 9 8 7 6 km/h 5 km/h 6 4 km/h 3 km/h 5.5 1 1.5 8 7 6 km/h 5 km/h 6 4 km/h 3 km/h 5.5 1 1.5 8 7 6 km/h 5 km/h 6 4 km/h 3 km/h 5.5 1 1.5 (a) T ref 2 [Nm] (b) T ref 4 [Nm] (c) T ref 6 [Nm] 9 9 9 8 7 6 km/h 5 km/h 6 4 km/h 3 km/h 5.5 1 1.5 8 7 6 km/h 5 km/h 6 4 km/h 3 km/h 5.5 1 1.5 8 7 6 km/h 5 km/h 6 4 km/h 3 km/h 5.5 1 1.5 (d) T ref 8 [Nm] (e) T ref [Nm] (f) T ref 12 [Nm] 9 9 9 8 7 6 km/h 5 km/h 6 4 km/h 3 km/h 5.5 1 1.5 (g) T ref 14 [Nm] Fig. 5. 5 8 7 6 km/h 5 km/h 6 4 km/h 3 km/h 5.5 1 1.5 (h) T ref 16 [Nm] Torque Distribution Results to Total Torque Reference. 8 7 6 km/h 5 km/h 6 4 km/h 3 km/h 5.5 1 1.5 (i) T ref 18 [Nm] 9 8 7 % 6% 7% % 8% % 2 4 6 8 (a) Motor Efficiency map I Fig. 6. 6 7% 9 % 8% 6% % % 8 7 2 4 6 8 (b) Motor Efficiency map II Effective Motor Efficiency Characteristics for Drive and Regeneration. 6(a) 6(b) 6(a) 6(b) (16) 6 γ 1.5 (9) (1) 7 7 4 1 6 7(a) γ 7(b) γ γ > 1 7(d) 7(g) < γ < 1 γ > 1 7(h) 7(i) < γ < 1 6 4 3 3 [km/h] 18 [Nm] 8 4 1 1 [kwh] V dc I dc t 4/6

9 9 9 8 7 6 km/h 5 km/h 6 4 km/h 3 km/h 5.5 1 1.5 8 7 6 km/h 5 km/h 6 4 km/h 3 km/h 5.5 1 1.5 8 7 6 km/h 5 km/h 6 4 km/h 3 km/h 5.5 1 1.5 (a) T ref [Nm] (b) T ref 23 [Nm] (c) T ref 26 [Nm] 9 9 9 8 7 6 km/h 5 km/h 6 4 km/h 3 km/h 5.5 1 1.5 8 7 6 km/h 5 km/h 6 4 km/h 3 km/h 5.5 1 1.5 8 7 6 km/h 5 km/h 6 4 km/h 3 km/h 5.5 1 1.5 (d) T ref 29 [Nm] (e) T ref 32 [Nm] (f) T ref 35 [Nm] 9 9 9 8 7 6 km/h 5 km/h 6 4 km/h 3 km/h 5.5 1 1.5 (g) T ref 38 [Nm] Fig. 7. 7 8 7 6 km/h 5 km/h 6 4 km/h 3 km/h 5.5 1 1.5 (h) T ref 41 [Nm] Torque Distribution Results to Total Torque Reference. 8 7 6 km/h 5 km/h 6 4 km/h 3 km/h 5.5 1 1.5 (i) T ref 44 [Nm] 9 8 7 2 1 [kwh] Table 2. km per kwh γ.5.88 1 km/kwh 3.2 3.6 4.1 3.8 6 5.2.4.6.8 1 8 (V 3 [km/h] T ref 18 [Nm]) Fig. 8. Efficiency of Torque Distribution E t L L E 1 [kwh] 2 2 1 [kwh] 3% 3% i-miev 16 [kwh] (5) 14 [km] 5. 4 4 γ 4 step1 γ V T ref 3 l m step2 5 V (i) T ref(j) γ V (i) T ref(j) step1 i j i, 1,, l j, 1,, m 5/6

1.5 NEDO ( ID:5A4871d) step3 9 Ì Ö.5 5 15 T ref [Nm] @6 [km/h] 1 Fig. 9. Optimum Distribution Rate to Total Torque Reference Ê Ë Ì Ð Ì Ö Î Ì Ö µ Ì Ä Î Ð Ì ÖÐ Ì ÖÖ Fig. 1. Block Diagram of RECS γ V(i),T ref(j) arg max η all (γ) V(i),T ref(j) (11) T ref γ (12) γ ( ) n V (i), T ref(j) a ijk T k (12) step4 step5 k (12) V (i) step4 V (x) i i + 1 V (i) V (i+1) V (i) < V (x) < V (i+1) γ ( ) V (i+1) V (x) V (x), T ref(j) γ ( ) V (i), T ref(j) V (i+1) V (i) + V (x) V (i) V (i+1) V (i) γ ( V (i+1), T ref(j) ) (13) 9 5 step1 step5 T ref 6 [km/h] γ 1 V ω TDL (Torque Distribution Low) (2) (3) T ref V ω (12) γ 6. Î 1 :,, Vol.129, No.1, pp2 pp23, 9 2 :,, Vol.127, No.2, pp98 pp11, 7 3 :,, Vol.129, No.11, pp732 pp734, 6 4 :,, Vol.126, No.1, pp28 pp31, 6 5 :, 21, VOL.2, ppii-63 ppii-66, 9 6 :, 21, VOL.1, ppi-667 ppi-67, 9 7 : SAZZ, 21, VOL.1, ppi-6 ppi-678, 9 8 :,, Vol.128, No.12, pp84 pp87, 8 9 :, 21, 5-16, pp26 pp27, 9 1 :, 21, 5-17, pp27 pp29, 9 11 :, 21, VOL.3, ppiii -179 ppiii -184, 9 12 : RE,, No.27, pp31 pp35, 9 13 :, 21, VOL.2, ppii-249 ppii-253, 9 14 :, 21, IIC-9-24, 9 15 :, 22, IIC1-39, 21 16 :,, 1 6/6