/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat

Similar documents
Untitled

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

D v D F v/d F v D F η v D (3.2) (a) F=0 (b) v=const. D F v Newtonian fluid σ ė σ = ηė (2.2) ė kl σ ij = D ijkl ė kl D ijkl (2.14) ė ij (3.3) µ η visco

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

TOP URL 1


5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â 0 = Tr Âe βĥ0 Tr e βĥ0 = dγ e βh 0(p,q) A(p, q) dγ e βh 0(p,q) (5.2) e βĥ0

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1

LLG-R8.Nisus.pdf

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

Gmech08.dvi

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

untitled

2.1: n = N/V ( ) k F = ( 3π 2 N ) 1/3 = ( 3π 2 n ) 1/3 V (2.5) [ ] a = h2 2m k2 F h2 2ma (1 27 ) (1 8 ) erg, (2.6) /k B 1 11 / K

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

// //( ) (Helmholtz, Hermann Ludwig Ferdinand von: ) [ ]< 35, 36 > δq =0 du

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

BGK

総研大恒星進化概要.dvi

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

TOP URL 1



( ) ,


meiji_resume_1.PDF

QMII_10.dvi

量子力学 問題

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

Note.tex 2008/09/19( )

30

Microsoft Word - 11問題表紙(選択).docx

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K

all.dvi

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

b3e2003.dvi

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

all.dvi

第1章 微分方程式と近似解法

QMI_10.dvi

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

A

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

構造と連続体の力学基礎

2 1 x 2 x 2 = RT 3πηaN A t (1.2) R/N A N A N A = N A m n(z) = n exp ( ) m gz k B T (1.3) z n z = m = m ρgv k B = erg K 1 R =

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

gr09.dvi

(Blackbody Radiation) (Stefan-Boltzmann s Law) (Wien s Displacement Law)

( )

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1

KENZOU Karman) x

BH BH BH BH Typeset by FoilTEX 2

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,,

The Physics of Atmospheres CAPTER :

September 25, ( ) pv = nrt (T = t( )) T: ( : (K)) : : ( ) e.g. ( ) ( ): 1

I

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

TOP URL 1

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

OHP.dvi

(5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b)

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1


Part () () Γ Part ,

all.dvi

~nabe/lecture/index.html 2

0201


( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

IA

untitled

2012専門分科会_new_4.pptx

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

all.dvi

Gmech08.dvi

TOP URL 1

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

master.dvi


all.dvi


64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ

201711grade1ouyou.pdf

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1)

chap03.dvi

Transcription:

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiation and the Continuing Failure of the Bilinear Formalism, Advances in Thermodynamics 3 (1990) 435 Hiromi Saida Two-Temperature Steady State Thermodynamics for a Radiation Field, Physica A356 (2005) 481 ( arxiv: cond-mat/0505223 )

1. 1.1 > > =

1.2 ρ 1.3 g/cm 3 ρ 5.5 g/cm 3 l mfp 2 cm R 10 11 cm T/R 1.4 10 4 K/cm 10 6 erg/g s quasi-steady process Energy Flux F = (λ rad + λ cd ) T 1g 1s 2 erg/g s

/ { = BH Disc T F rad = λ rad T

= BH Disc

{ { BH Disc

1.3 Flux Bi-Positon / 3 2 Bilinear Form 3 4 Boltzmann

2. Bilinear Form 2.1 2 Bilinear Form Bilinear Form = [Force] [Flux] Biliniear Form No 2

2.2 Navier-Stokes Fourier 16 v [cm/s] ρ [g/cm 3 ] Specific Volume V = 1/ρ [cm 3 /g] u Specific Internal Energy [erg/g] q Heat Flux [erg/cm 2 s] T [erg] k B = 1 P [dyn/cm 2 ] P ij = P ji (ij = 1, 2, 3) P = p U + p v U + P p : v p v : Bulk Viscosity P v : Shear Viscosity TrP ( U Unit tensor ) v = 0 q, p v, P v

q = λ T Fourier λ p v = ζ i v i Stokes ζ P v = 2η V Newton η 1 9 7 2

Bilinear Form [ 1] Energy Balance de dt = dq dt + dw dt 1 ( 1 E := ρ u + V (t) 2 ρ v 2 ) dv, V (t) dq dt := q n dσ, Σ(t), n dw dt := Σ(t) Σ(t) P ij n i v j dσ + V (t) ρ F v dv ( F [dyn/g] ) v v + const. 5 T µν ;ν = 0, N µ ;µ = 0

Energy Balance + Galilean Invariance dρ : = ρ dt i v i 5 : ρ dvi = dt j P ij + ρ F i : ρ du = dt i q i P ij i v j ( d Lagrange dt = ) t + vi i Stokes + Newton = Navier-Stokes 5 7 2

[ 2] Entropy Balance s Specific Entropy [entropy/g] [entropy] = [1] k B = 1 J s Entropy Flux [entropy/cm 2 s] σ s [entropy/cm 3 s] Entropy Balance ρ ds dt = i Js i + σ s 1 Entropy Balance σ s σ s Bilinear Form

σ s Bilinear Form 1 ds dt = 1 T dρ dt du dt du dt + p T dv dt, V = 1 ρ [cm3 /g] dρ dt = 1 dv V 2 dt i v j i v j = 1 3 ( k v k ) δ ij + V ij + W ij Velocity Gradient Tensor V ij := (i v j) 1 3 ( k v k ) δ ij : Shear Velocity Tensor (Traceless) W ij := [i v j] : Vorticity Velocity Tensor

1 + Entropy Balance ρ ds dt J s = 1 q T = i J i s + σ s σ s = 1 T 2 qi i T 1 T pv i v i 1 T P v ij V ij Bilinear Form = Flux Force Thermodynamic Force 1 T 2 T 1 T i v i 1 T { Dissipative Flux Force Flux q p v P v V

Navier-Stokes Fourier 2 σ s Bilinear Form Fourier, Stokes, Newton σ s = λ T 2 ( T ) 2 + ζ T ( ) 2 2η ( V ) 2 div v + 0 T 2 σ s 0 Bilinear Form 2 Onsager

2.3 Bilinear Form Extended Irreversible Thermodynamics (EIT) ( Israel ) Navier-Stokes + Fourier Bilinear Form & Bilinear Form SST

2.4 Bilinear Form Ref: C. Essex Planck Matter System Photons OK Planck Isolating Wall Matter System A OK Wall Photons Free Streaming Α Isolating Wall Matter System + A A Matter System Free Streaming

Σ tot = Σ MS + Σ rad { ΣMS = [ Matter System ] Σ rad = [ ] Σ MS = dx 3 σ s ( x) Bilinear Form MS σ s ( x) x Bilinear Form Σ rad Bilinear Form Photons Matter System Α Isolating Wall

Free Streaming Σ rad Σ rad = da S, S = J ν ( r a ) cos θ dω dν A θ θ ν Photon r a A Α J ν ( r a ) = 2k B ν 2 [ c 2 X = c2 I ν ( r a ) 2hν 3 I ν ( r a ) ] X ln X (1 + X) ln(1 + X) Boson r a I ν ( r a ) Boltzmann J ν Bilinear Form r a

Photons Σ tot = Σ MS + Σ rad Σ rad Bilinear Form Matter System Free Streaming Α Isolating Wall Bilinear Form 1.2 1.2

3. Ref: H.S. 3.1 { Bilinear Form 2 2 Stationary Energy Flow T out T in ( T in > T out ) { Tin T out ( ex. T in > T out ) T out T in

3.2 0 3 H.S. Physica A356(2005) 481, cond-mat/050523 T in T (1) out (2) Stationary Energy Flow (3) ( > ) T in T out

3.3 1 f( x, p ) 2 f( x, p ) = ω = p c 1 exp [ ω/t ( x, p ) ] 1 T ( x, p in ) = T in T ( x, p out ) = T out T out p out T in x ω p x p in g ( ) in x p in = T in p in = T out

3.4 2 e rad ( x ) T out p out T in x p in g ( ) in x e rad ( dp 3 x ) = 2 (2π ) 3 ω f( x, p ) = 4σ [ g c in ( x ) Tin 4 + g out( ] x ) Tout 4 g in ( x ) = 1 dω ] 4 π xp p in g out ( x ) = g in ( p in p out ) Ω xp x p σ = π2 60h 3 c2 Stefan-Boltzmann

3.5 1 s rad ( x ) Landau-Lifshitz 1 55 H- s rad ( dp 3 x ) = 2 [ (1 + f) ln(1 + f) f ln f ] (2π ) 3 = 16 σ 3 [ g in ( x ) T 3 in + g out( x ) T 3 out T out ] x p in E tot = E in + E out + dx 3 e rad ( x ) S tot = S in + S out + dx 3 s rad ( x ) p out T in g ( ) in x S tot

2 Tin Tout Relaxation Nonequilibrium radiation field (Tin > Tout) Teq Teq Teq Equilibrium radiation field de tot = 0, T in > T out [ ds tot = C in + 16 σ T 3 c in dx 3 g in ( ] ( 1 x ) 1 ) T in T out dt in C in = de in > 0 dt in ds tot 0 = for T in = T out S rad Well-Defined 0 3 OK

3.6 2 τ, ψ( x ) τ, ψ τ 0, ψ 0 as T in T out 0 f rad := e rad (P rad, s rad, ψ) T rad s rad τ ψ ψ = f rad τ τ, ψ T rad ( x ) τ = T in T out ψ( x ) = 16σ 3c g in( x ) g out ( x ) T rad ( x ) = g in ( x ) T in g out ( x ) T out ( Tin 3 T out 3 ) T out p out T in x p in g ( ) in x

3.7 3 j ( x ) { p tot = x n = p tot j ( x ) = j( x ) n j( dp 3 x ) = 2 (2π ) 3 ω c f( x, p ) cos φ φ n p in/out ( = σ γ in ( x ) Tin 4 γ out( ) x ) Tout 4 T out x p in γ in ( x ) = 1 dω π xp cos φ p in γ out ( x ) = γ in ( p in p out ) p out g in ( x ), g out ( x ) T in g ( ) in x

3.8 : e rad ( x ) = g in ( x ) e eq (T in ) + g out ( x ) e eq (T out ) : s rad ( x ) = g in ( x ) s eq (T in ) + g out ( x ) s eq (T out ) : T rad ( x ) = g in ( x ) T in g out ( x ) T out : τ = T in T out : ψ( x ) = g in ( x ) g out ( x ) [ s eq (T in ) s eq (T out ) ] : j( x ) = σ ( γ in ( x ) Tin 4 γ out( x ) Tout 4 ) e eq (T ) T out x p in s eq (T ) p out T in g ( ) in x

4. Essex Boltzmann