( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

Similar documents
(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

TOP URL 1

,,..,. 1

TOP URL 1


July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

TOP URL 1

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ

Chadwick [ 1 ] 1919,, electron number Q kinetic energy [MeV] 8.1: 8.1, 1 internal conversion electron E γ E e =

( )


QMII_10.dvi

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

0406_total.pdf

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e


素粒子物理学2 素粒子物理学序論B 2010年度講義第2回

量子力学A

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

1 2 2 (Dielecrics) Maxwell ( ) D H

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

1/2 ( ) 1 * 1 2/3 *2 up charm top -1/3 down strange bottom 6 (ν e, ν µ, ν τ ) -1 (e) (µ) (τ) 6 ( 2 ) 6 6 I II III u d ν e e c s ν µ µ t b ν τ τ (2a) (

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m

85 4

Note.tex 2008/09/19( )

量子力学 問題

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

SO(2)

meiji_resume_1.PDF

70 : 20 : A B (20 ) (30 ) 50 1

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)


日本内科学会雑誌第102巻第4号

eto-vol1.dvi

untitled

本文/目次(裏白)

main.dvi

Ł\”ƒ-2005

第90回日本感染症学会学術講演会抄録(I)

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =


Part () () Γ Part ,

u Θ u u u ( λ + ) v Θ v v v ( λ + ) (.) Θ ( λ + ) (.) u + + v (.),, S ( λ + ) uv,, S uv, SH (.8) (.8) S S (.9),

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

66 σ σ (8.1) σ = 0 0 σd = 0 (8.2) (8.2) (8.1) E ρ d = 0... d = 0 (8.3) d 1 NN K K 8.1 d σd σd M = σd = E 2 d (8.4) ρ 2 d = I M = EI ρ 1 ρ = M EI ρ EI

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

xyz,, uvw,, Bernoulli-Euler u c c c v, w θ x c c c dv ( x) dw uxyz (,, ) = u( x) y z + ω( yz, ) φ dx dx c vxyz (,, ) = v( x) zθ x ( x) c wxyz (,, ) =

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.


Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

基礎数学I

untitled

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

all.dvi

pdf

DVIOUT-fujin


Mott散乱によるParity対称性の破れを検証

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

SFGÇÃÉXÉyÉNÉgÉãå`.pdf


A

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

LLG-R8.Nisus.pdf

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

The Physics of Atmospheres CAPTER :

SO(3) 49 u = Ru (6.9), i u iv i = i u iv i (C ) π π : G Hom(V, V ) : g D(g). π : R 3 V : i 1. : u u = u 1 u 2 u 3 (6.10) 6.2 i R α (1) = 0 cos α

1).1-5) - 9 -

1

Z: Q: R: C:

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

III,..

( ) e + e ( ) ( ) e + e () ( ) e e Τ ( ) e e ( ) ( ) () () ( ) ( ) ( ) ( )


1 223 KamLAND 2014 ( 26 ) KamLAND 144 Ce CeLAND 8 Li IsoDAR CeLAND IsoDAR ν e ν µ ν τ ν 1 ν 2 ν MNS m 2 21

cm λ λ = h/p p ( ) λ = cm E pc [ev] 2.2 quark lepton u d c s t b e 1 3e electric charge e color charge red blue green qq

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K

5 c P 5 kn n t π (.5 P 7 MP π (.5 n t n cos π. MP 6 4 t sin π 6 cos π 6.7 MP 4 P P N i i i i N i j F j ii N i i ii F j i i N ii li i F j i ij li i i i

all.dvi

Transcription:

( ) Note 3 19 12 13 8 8.1 (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R, µ R, τ R (1a) L ( ) ) * 3) W Z 1/2 ( - ) L L d u + e + ν e 1 1 0 0 0 0 1 1 µ e + ν e + ν µ 1 1 1 1 µ 1 0 0 1 e 0 1 1 0 * 1) * 2) * 3) SU(3) 1

(A,Z) (A,Z 1) + e + + ν e (A,Z) (A,Z + 1) + e + ν e (2a) (2b) µ e + ν e + ν µ (3) 1 µ eγ µ e + γ < 1.2 10 11 (4) 2 π π 1: µ eγ π + µ + + ν µ ( 2(b)) ν µ (ν e ) ( 2(a) ) ( 2(c)(d)) 1962 2: (a) d (b) π + u d W + µ + ν µ (c)(d)(e) ν e, ν µ, ν τ ( ) e + e + τ + τ + (5a) e + ν e + ν τ τ (5b) µ + ν µ + ν τ 2

ν τ ν τ ν e (ν µ ) τ e(µ) + γ ν e (ν µ ) µ eγ, τ µγ e +X µ +Y ( ) Z e + e + Z (q i + q i ) or (l i + l + i ) or (ν i + ν i ) (6) i 3 m Z /2 * 4) ( BR = Γ(Z ) Γ(Z all) e e + E(e e + ) s = mz σ(e e + hadrons) = σ(e e + Z)BR(Z hadrons) (8) ( 3) (7) N ν = 2.994 ± 0.012 (9) 3: e + e + Z N ν =3,4,5 m z /2 8.2 (1930) 30 (1956) ν e + p e + + n e + + e n +Cd γ + γ Cd Cd + (3 4) γ s (10a) (10b) * 4) m Z = 91GeV, m top = 185GeV m u 3MeV, m s 6MeV, m s 120MeV, m c 1.3GeV, m b 4.2GeV m e 0.51MeV, m µ = 105.7MeV, m τ 1777MeV, m νi = 0 3

Cd Cd W e + W p( u ) (d ) 2m e 3-4 10 4 1m ( ) ( ) 4 4: Reines-Cowan(1954) γ (Cd) 1kW 2 10 14 10 13 /sec/cm 2 100 ( ) 20 8.3 8.3.1 d u + e + ν e (11) W f i = 2π H i f 2 ρ, ρ = (12) H f i 2 4

Γ ρ = δ(e 0 E e E ν ) d3 p e (2π) 3 d 3 p ν (2π) 3 (13a) dγ = G2 β 2π M 3 2 F(Z,E)p e E e p ν E ν de e (13b) p ν E ν = (E 0 E e ) (E 0 E e ) 2 m 2 ν, E 0 = M(Z,A) M(Z + 1,A) m ν = E e,max (13c) M 2 = < 1 > 2 + C GT 2 < σ > 2 (13d) F(Z,E) [ ] dγ 1/2 de K(E) = e (14) F(Z,E)p e E e m ν = 0 K(E) E 0 E e ( 5) m ν 0 5: ( ) m ν 0 m ν ( ) (1) E 0 m ν E 0 ( 3 H, E 0 = 18KeV ) E e = E 0 E 0 E e > E 0 ε = R E0 E 0 E2 (E 0 E) 2 ( ) de 3 R E0 0 E 2 (E 0 E) 2 de = 10 (15) E 0 = 1eV ε 2 10 13 m ν 5

(2) E E 6 R OP (E) E EL(E) BS(E) N(E ) Z N(E) obs = N(E )R(E,E )de (16) 6: ( 5 ) (3) V p ν E ν = P i (E 0 V i E e ) i (E 0 V i E e ) 2 m 2 ν ) (17) P i i * 5) 7 3 H p/p = 0.02%( E = 8eV ) E 0 1600eV m ν = 0 m ν < 13eV m νe < 2eV 8.3.2 π + (p) µ + (q) + ν µ (k) (18) π m π = q 2 + m 2 µ + k 2 + m 2 ν, k = k = q = q (19a) q m π = 139.56995 ± 0.00035MeV m µ = 105.658389 ± 0.000034MeV q = 29.79200 ± 0.00011MeV m 2 ν = 0.016 ± 0.023 (20a) m ν µ < 0.17MeV (90%CL) (20b) * 6) * 5) Phys. Lett. B187(1987)198-204 * 6) K.AssamaganPhys. Rev. D53(1996) 6065 6

7: m ν = 0 m ν < 13eV e e + π + e + e + τ + τ m 2 ν = E(ν) 2 p(ν) 2 = (m τ i τ ± π ± + π + + π + ν τ E(π i )) 2 ( p(π i )) 2, E(π i ) = i p(π i ) 2 + m 2 π (21a) (21b) (21c) m τ = 1777 +0.30 0.27 MeV m ν τ < 18.2MeV (95%CL) (22) (1998) ( 8) 8: m j = m i j m top 175GeV,m b 4.3GeV,m c 1.25GeV,m s 105MeV,m d 6MeV,m u 3MeV,m τ = 1777MeV,m µ = 105.7MeV,m e = 0.511MeV m top 175GeV m ν m top < 10 13 (23) 7

m ν m e < 10 7 (24) v= 250GeV m gv (25) ( ) MeV ( ) 3-4 Z N ν L ν L N = 3 2 ( ) ν L ν R m R * 7) ν L, ν R M [ ] [ ] m L 0 m L m D M = 0 m R m D m R (26) (26) ν,n m ν,m N L R ν R m L = 0 m D m R m D m d /m R ν > ν L > m D m R ν R >, N > ν R > + m D m R ν L > (27a) m ν m2 D m R, m N m R (27b) ν >= γ 5 ν > m ν m R = m 2 D (28) m R m ν m D m W, m R 10 16 GeV m ν 10 3 ev * 7) (ν L ) c ν R 4 {ν L, (ν L ) c = (ν c ) R }, {ν R, (ν R ) c = (ν c ) L } 8

10 16 GeV 8.4 π π + µ + + ν µ, π + e + + ν e (29) π π µ + (e + ) π π µ + (e + ) ( 9 µ + (e + ) 1 v (1/2)(m 2 /p 2 ) π µ 9: π ( ) µ + Γ(π µ + ν) m 2 (m 2 π m 2 µ) 2 µ m 5 π (30) Γ(π e + ν) Γ(π µ + ν) = m2 e(m 2 π m 2 e) 2 m 2 µ(m 2 π m 2 µ) 2 = 1.284 10 4 (31) 1.233 10 4 1.218 ± 0.014 10 4 µ eν * 8) ν e ν µ π ( ) ( ) * 8) 9

( µ = (e/2m µ ) s ) ( 10 ) 10: π (H = µ B) ( ( 10 ) 11 11: #1, #2 #3( ) #4 #4 #3 #4 (Phys.Rev.Lett.7(1961)23) 43MeV 10 ( ) 4 3 10 P y A = L R L + R = ±0.09, f or P y = 1 (32) A = 0.09 ± 0.031 P y = 0.9 µ 100% 10

8.5 2ν 0ν ( 12(a),(b)) 2ν : (Z) (Z + 2) + 2e + 2 ν e (33a) 0ν : (Z) (Z + 2) + 2e (33b) 2ν 12: 2 (a) 2ν (b) 0ν (3) 0ν 12(b) (1) ν L (2) 2 (m ν /m e 2 ) 13: (a) 2ν (b) 0ν (c) 1.29kg y ( ) 90%CL 11

0ν 2ν ( 13 ) 10 18 10 24 ( ) 2 100% 13( ) 2ν * 9) 100 Mo 100 Ru + 2e + 2 ν e τ 1/2 = 7.1 ± 0.4 10 18 (34a) 76 Ge 76 Se + 2e + 2 ν e τ 1/2 = 1.5 ± 0.1 10 21 (34b) 0ν 0ν 180 ( ) (Ge) τ 0ν > 1.9 10 25 (35) m ν < 1eV (36) * 9) A.S.Barabash Neutrino2006, SantaFe 12

A A.1 E i, p i (37) t ( 1 ) ψ E = p 2 /2m +V i [ ] t ψ = Hψ = 2 2m +V ψ (38) E 2 = p 2 + m 2 (39) (KG) [ ] 2 t 2 2 + m 2 φ = 0 (40) ( 2 ) - (39) 2 ψ {ψ = (ψ 1,ψ 2, ) T ; T } * 10) i [ t ψ = Hψ = α ] i + βm ψ Eψ = [α p + βm]ψ (42) {α = (α i,i = 1 3),β} (39) E 2 = (α p + βm)(α p + βm) (43) (39) E 2 = p 2 + m 2 = i, j (α i α j + α j α i )p i p j + i (βα i + α i β)p i m + β 2 m 2 (44) α 2 i = β 2 = 1, α i α j + α j α i = 0 (i j), βα i + α i β = 0 (45) * 10) q = ω 2 q p q ṗ = ω 2 q ψ = (q, p) T i dψ dt = Sψ, S = 13 [ ] 0, 1 ω 2 0 (41)

4 2 2 3 m = 0 β α i = ±σ i [ ] [ ] 0 1 0 i σ 1 =, σ 2 =, σ 3 = 1 0 i 0 [ 1 0 0 1 ± φ R,L ], (46) Eφ L = σ pφ L, Eφ R = +σ pφ R (47) (E,p) φ(t,x) = φ(e,p)e ip x iet * 11) φ R = p σ p E p φ R, h = σ p p φ L = p σ p E p φ L (48) (49) A.1. p (θ,φ) [ ] σ p cosθ sinθe iφ = p sinθe iφ cosθ (50) [ χ + = cos θ 2 e iφ/2 sin θ 2 eiφ/2 ] [, χ = sin θ 2 eiφ/2 cos θ 2 e iφ/2 ] (51) m = 0 p /E = ±1 χ ± φ L,R φ R E 0 φ R = χ + E > 0, φ R = χ E < 0 (52) m = 0 φ R φ L ( ) φ R φ L (47) x x, p p φ R φ L * 12) φ R φ L 4 [ ] [ ] [ ] φ L σ 0 0 1 ψ =, α, β 0 σ 1 0 * 11) ψ(t,x) = 1 (2π) 3 φ(e,p)e ip x iet d 3 p * 12) m(ν) 0 φ R 14 (53)

β φ L φ R α, β (45) Eψ = [α p + βm]ψ (α, β 4 4 ) (54) 4 Eφ L = σ pφ L + mφ R (55a) Eφ R = σ pφ R + mφ L (55b) * 13) (47) φ L,R p >> m A.2. φ L,R = aχ + + bχ (56) (55) a,b φ L,R ( v, v= p /E ± E + p E p 1 ± v 1 v φ L = 2E χ + 2E χ + = 2 χ + 2 χ + (57) E + p E p 1 ± v 1 v φ R = 2E χ + + 2E χ = 2 χ + + 2 χ (58) E m = 0 E = p (48) h < h >= < φ L,R h φ L,R > < φ L,R φ L,R > = a 2 b 2 a 2 + b 2 = p = v (59) E m 0 E = p 2 + m 2 p + m 2 /2p, m << p φ L χ + 2p m φ L χ +, E > 0 (60) χ + + 2p m χ, E < 0 ( ) m/p * 13) m/p m = 0 15

A.2 β γ 0 = β, γ i = βα i, (61) [Eγ 0 p γ m]ψ = [iγ 0 0 + iγ i i m]ψ = [iγ µ µ m]ψ = 0 * 14) (62) γ µ γ µ γ ν + γ ν γ µ = 2g µ ν, g 00 = g 11 = g 22 = g 33 = 1, g µ ν = 0 (µ ν) (63a) γ 0 = γ 0, γ i = γ i, γ 0 γ i γ 0 = γ i (63b) ψ ψ γ 0 (64) ψ (adjoint) (63) ψ i µ ψγ µ + mψ ψ(iγ µ µ +m) = 0 (65) (62) ψ (65) ψ µ (ψγ µ ψ) = 0 (66) ψγ µ ψ ψγ µ ψ ( ) Γ 2 ψγψ ψ [ ] γ 5 iγ 0 γ 1 γ 2 γ 3 1 0 = iα 1 α 2 α 3 = (67a) 0 1 A.3. (γ 5 ) 2 = 1, γ 5 γ µ + γ µ γ 5 = 0 (68a) [ ] [ ] ψ L = 1 γ 5 φ L ψ =, ψ R = 1 + γ 5 0 ψ = 2 0 2 φ R (69) γ 5 ψ L = ψ L, γ 5 ψ R = ψ R (70) ψ L,R ψψ, ψγ 5 ψ * 15) ( ) * 14) A µ = (A 0 ;A) A µ = (A 0 ; A) A B = A 0 B 0 A B = A µ B µ ( ) * 15) ψ ψ = ψγ 0 ψ 16

A.3 (63) γ SγS 1 (63) E, p >> m (p << m, E m + p 2 /2m) β β D,W [ ] ψ D = Sψ W, S = 1 1 1, γ µ D 2 1 1 = Sγ µ W S 1 (71a) [ ] [ ] [ ] 0 σ 1 0 α D =, β D =, γ 5 0 1 D = (71b) σ 0 0 1 1 0 i ψ t [ = α i + βm α ] ψ (72) r A.4. (54) x x, p p, ψ βψ ψ βψ m 0 0 0 H = mβ = 0 m 0 0 0 0 m 0 (73) 0 0 0 m H m=0 (47) (47) iσ iσ 2 σ i = iσ i σ 2 E( iσ 2 φ L ) = σ ( iσ 2 φ L ) (74) 17

( iσ 2 φ L ) φ R +iσ 2 φ R φ L φ L (φ L ) c = φ c R iσ 2φ L, φ R (φ R ) c = φ c L iσ 2φ R (75) [ ] 4 ψ ψ c 0 iσ 2 ψ = iβα 2 ψ = iγ 2 ψ = iγ 2 γ 0 ψ T Cψ T (76) iσ 2 0 (C =charge conjugation ) * 16) z (1,0) T,(0,1) T [ ] [ ] 1 φ L (t) = a e i( E )t 0 + b e iet (77) 0 1 L R C p p ea, E E + eφ µ µ + iea µ A µ = (A 0, A) (78) (47) ( ) (i t eφ)φ L,R = σ i ea φ L,R (79) [φ L,R ] c φ L,R ( ) (i t + eφ)[φ L,R ] c = σ i + ea [φ L,R ] c (80) (79) iσ 2 (80) φ L e [φ L ] c = φ c R = iσ 2φ L -e L R φ R = iσ 2 φ L, φ L = iσ 2 φ R (81) (55) (E + σ p)φ L = im L σ 2 φ L (82a) (E σ p)φ R = im R σ 2 φ R (82b) 4 (55) 2 φ L φ R m L m R (82a) ( ) (82b) ( ) L R LR * 16) L R (75) 2 φ L φ R 2 18

m L m R LR (82) (47) 1/2 L R 4 (= ) 2 2 (φ 1, φ 2 ) (ψ, ψ ) = {φ 1 + iφ 2 )/ 2, (φ 1 iφ 2 )/ 2} 4 19