CMP Technical Report No. 92 DOS Department of Computational Nanomaterials Design ISIR, Osaka University

Similar documents
Supplement to Osaka2k Department of Computational Nanomaterials Design ISIR, Osaka University


4/15 No.

1 1

02-量子力学の復習

液晶の物理1:連続体理論(弾性,粘性)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

TOP URL 1

Platypus-QM β ( )

SiC SiC QMAS(Quantum MAterials Simulator) VASP(Vienna Ab-initio Simulation Package) SiC 3C, 4H, 6H-SiC EV VASP VASP 3C, 4H, 6H-SiC (0001) (11 20) (1 1

PDF

42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 =

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

ssp2_fixed.dvi


main.dvi

R = Ar l B r l. A, B A, B.. r 2 R r = r2 [lar r l B r l2 ]=larl l B r l.2 r 2 R = [lar l l Br ] r r r = ll Ar l ll B = ll R rl.3 sin θ Θ = ll.4 Θsinθ

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

Mathematical Logic I 12 Contents I Zorn

Page 1 of 6 B (The World of Mathematics) November 20, 2006 Final Exam 2006 Division: ID#: Name: 1. p, q, r (Let p, q, r are propositions. ) (10pts) (a

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

D:/cssj/jcs/v7n2/a5tex/TX2.dvi

I

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ

Fermat s Last Theorem Hajime Mashima November 19, 2018 Abstract About 380 years ago, Pierre de Fermat wrote the following idea to Diophantus s Arithme

プログラム

28

2012専門分科会_new_4.pptx


AtCoder Regular Contest 073 Editorial Kohei Morita(yosupo) A: Shiritori if python3 a, b, c = input().split() if a[len(a)-1] == b[0] and b[len(

スライド 1

note4.dvi

量子力学 問題

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

JFE.dvi

橡3章波浪取扱.PDF

数学の基礎訓練I

10

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

Akito Tsuboi June 22, T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T


反D中間子と核子のエキゾチックな 束縛状態と散乱状態の解析

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional

sikepuri.dvi

Isogai, T., Building a dynamic correlation network for fat-tailed financial asset returns, Applied Network Science (7):-24, 206,

振動と波動

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

EGunGPU

q quark L left-handed lepton. λ Gell-Mann SU(3), a = 8 σ Pauli, i =, 2, 3 U() T a T i 2 Ỹ = 60 traceless tr Ỹ 2 = 2 notation. 2 off-diagonal matrices

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (


Microsoft Excelを用いた分子軌道の描画の実習

1

Appendix A BASIC BASIC Beginner s All-purpose Symbolic Instruction Code FORTRAN COBOL C JAVA PASCAL (NEC N88-BASIC Windows BASIC (1) (2) ( ) BASIC BAS

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

25 II :30 16:00 (1),. Do not open this problem booklet until the start of the examination is announced. (2) 3.. Answer the following 3 proble


. (.8.). t + t m ü(t + t) + c u(t + t) + k u(t + t) = f(t + t) () m ü f. () c u k u t + t u Taylor t 3 u(t + t) = u(t) + t! u(t) + ( t)! = u(t) + t u(

AN 100: ISPを使用するためのガイドライン

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論

[2, 3, 4, 5] * C s (a m k (symmetry operation E m[ 1(a ] σ m σ (symmetry element E σ {E, σ} C s 32 ( ( =, 2 =, (3 0 1 v = x 1 1 +

日立金属技報 Vol.34

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

untitled

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

k m m d2 x i dt 2 = f i = kx i (i = 1, 2, 3 or x, y, z) f i σ ij x i e ij = 2.1 Hooke s law and elastic constants (a) x i (2.1) k m σ A σ σ σ σ f i x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

pdf

28 Horizontal angle correction using straight line detection in an equirectangular image

Specview Specview Specview STSCI(Space Telescope SCience Institute) VO Specview Web page htt

1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l

d dt P = d ( ) dv G M vg = F M = F (4.1) dt dt M v G P = M v G F (4.1) d dt H G = M G (4.2) H G M G Z K O I z R R O J x k i O P r! j Y y O -

¼§À�ÍýÏÀ – Ê×ÎòÅŻҼ§À�¤È¥¹¥Ô¥ó¤æ¤é¤® - No.7, No.8, No.9

08 p Boltzmann I P ( ) principle of equal probability P ( ) g ( )g ( 0 ) (4 89) (4 88) eq II 0 g ( 0 ) 0 eq Taylor eq (4 90) g P ( ) g ( ) g ( 0

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1

WIF6002-e


untitled

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論

鉄鋼協会プレゼン

( ) ( )

Note.tex 2008/09/19( )

1 1.1,,,.. (, ),..,. (Fig. 1.1). Macro theory (e.g. Continuum mechanics) Consideration under the simple concept (e.g. ionic radius, bond valence) Stru

本文/目次(裏白)

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + (

4.9 Hausman Test Time Fixed Effects Model vs Time Random Effects Model Two-way Fixed Effects Model

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

29

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

Transcription:

CMP Technical Report No. 92 DOS Department of Computational Nanomaterials Design ISIR, Osaka University

1 1 2 1 3 GaAs 3 3.1 SCF..................................... 3 3.2 DOS pwbcd.......................... 4 3.3 tetrahedron pdosdr...................... 6 3.3.1 pwbcd................................... 7 3.3.2 pdosdr.................................. 9 3.3.3 aydosp.................................. 11 3.4.............................. 12 3.5 pdos............................... 14 4 pdosdr k 14 5 16 A label of m components 17 B colors in aydosp 17 0

1 Osaka2k Technical Report [1, 2, 3] pwm VersionNo = 1.72 VersionDate = 08 Jul 2006 pwbcd VersionNo = 0.90 VersionDate = 27 Jun 2006 2 κ lm ϕ κ lm (r) = uκ l (r)y lm(θ, φ) (1) a κ lm ϕ k,alm (r) = R exp[ik (R + R a )] ϕ κ lm (r R R a) (2) ψ k (r) ψ k ϕ κ lm (3) 3G ψ k k + G k + G ϕ κ lm = ψk (k + G)ϕκ lm (k + G) (4) G G 1

ψk (k + G) ϕ κ lm (q) = ϕ κ lm (r)e iq r dr = (2l + 1)i l u κl (r)j l (qr)r 2 dr Y lm (ˆq)P l (cos θ)dω 1 0 = 4πi l u κl (r)j l (qr)r 2 dry lm (ˆq) (5) I κ 0 l (q) = 4πil u κl (r)j l (qr)r 2 dr (6) 0 {Il κ (q)} 4 a S a (q) ψ k ϕ κ lm = q ψ k (q)iκ l (q)y lm(ˆq)s a (q) (7) 7 ϕ κ lm I κ l (q) Y lm(ˆq) S a (q) ϕ k,alm 1 2 k ψ k (r) = G c k+g e i(k+g) r (8) k G 8 2 1 Y lm (ˆq) 2

k k {ϕ k,alm (r)} 2 k 3 GaAs GaAs DOS DOS 3.1 SCF SCF ==================== K-Space Setup ============================== k sampling point set Nkpts = 2 No NM index in p in c A/gmin i/o star WTK 1 LD -1-1 -1/ 4-1 -1-1/ 4 0.25000 1 4 0.25000 2 XY 1-1 -1/ 4-3 1 1/ 4 0.47871 1 12 0.75000 ==================== PW_Expansion ============================== Cutoff in the reciprocal space am = 3.10000 (rel. units) kcut = 3.15801 (ab^-1) with 2Pi Ecut = 9.97300 (Ry) UNIT of K 1.01871 (a.u.) Planewave expansion with NHDIM = 169 Name: LD -1-1 -1/ 4 Nstr= 4 WTK= 0.250000 NPW= 162 Name: XY 1-1 -1/ 4 Nstr= 12 WTK= 0.750000 NPW= 164 ==================== atomic PPOT ============================== Ga ca nrl nc pseudopotential read from tape atom-lda 8-JAN- 2 Improved Troullier - Martins potential 4s( 2.00) rc= 2.50 4p( 1.00) rc= 2.35 As ca nrl nc pseudopotential read from tape atom-lda 8-JAN- 2 Improved Troullier - Martins potential 4s( 2.00) rc= 2.50 4p( 3.00) rc= 2.50 SCF ====================SCF calculation==================== convergence parameters max iteration : 15 iter Eel dee Xsi nst/bk aglmax (Ry/cell) (Ry/cell) (Ry^2/cell) ==== =============== ============ ============ ======== ============= 3

1-0.0090254029-6.9760E+00 7.0425E-02 5/ 0 0.624308035 2-0.4061363678-3.9711E-01 9.0575E-04 5/ 0 0.237960989 3-0.4127710828-6.6347E-03 3.2210E-05 5/ 1 0.021868549 4-0.4129192995-1.4822E-04 6.4211E-07 5/ 7 0.003967351 5-0.4129231853-3.8858E-06 2.5645E-08 5/ 16 0.000715309 6-0.4129233887-2.0347E-07 5.1295E-10 5/ 11 0.000085793 7-0.4129232409 1.4781E-07 3.4848E-11 3/ 8 0.000021200 CG process is stopped because increase in Eel 1.4781E-07 Etot Eel delta E resid iter ============== ============= ========== ========== === -17.25697453-0.41292324 1.478E-07 3.485E-11 7 ===== KS levels ===== -0.513307 0.047161 0.283862 0.283862-0.417444-0.103171 0.106391 0.193900 3.2 DOS pwbcd DOS DOS Osaka2k DOS pwbcd bcd.para JobType dos Input file name gaas.prim number of division (nkdiv) 8 number of levels you want to draw (NBUP) usually NEPC 8 scan zone only (iscan) 1 print control (ilp) 1 use symmetry (isymm) 1 energy unit (ienun=0 for Ry, 1 for ev) 0 pwbcd dos gaas.out ========================= DOSMain ============================== nkdiv per line : 8 nk3dim : 512 N of bands (NBUP) : 8 dim0eng : 4096 Use of symmetry for diagonalization Decomposition of DOS ON using pa n sample k points (nktot: 47 n total k points (nkfull: 564 Upper energy to limit DO: 5.000 (Ry) 4

50 DOS of GaAs 40 States/Ry. 30 20 10-0.6-0.4-0.2 0.0 0.2 0.4 0.6 0.8 1.0 Energy \Ry.\ 1: Total DOS of GaAs. DOS ========================= FindEf ============================== Nel0prim = 8 fixocc = 2.00000E+00 N of electrons 8 are occupied in the ascending order in energy. N of occupation processe 189 residual of electron num 0.000000 === Fermi Sort Summary === Fermi_Level = 0.424483 (Ry) at 1 th k-point GM 0 0 0/ 8 (p) 0 0 0/ 8 (c) Valence Top = 0.424483 (Ry) at 1 th k-point GM 0 0 0/ 8 (p) 0 0 0/ 8 (c) Conduction Bottom = 0.428412 (Ry) at 42 th k-point X 4 4 0/ 8 (p) 0 0 8/ 8 (c) Energy Gap = 0.003930 (Ry) with energy resolution for degeneracy 1.00E-03 (Ry) pwbcd fort.2 pdosdr DOS pdosdr pdosdr.inp gaas. NONM 4 4 4 0-0.6 1.0 0.001 8 1 12 5

Osaka2k pdosdr fort.13 aydosp aydosp.inp 61-0.6 1.0 150.0 120.0 10.0 50.0 0.376 1 1 0 DOS of GaAs DOS 1 3.3 tetrahedron pdosdr pdosdr DOS DOS 2 JobType dos... nkdiv 8... OPTION BEGIN decompdos ON OPTION END gaas. NONMSPIN-ORBIT 4 4 4 8 MAXCMP 4 NCOMP 1 Ga2s 2 Ga4p 5 As4s 6 As4p -0.6 1.0 0.001 8 1 12 ======================== Decomposition of DOS parameters maxcmp : 8 ncmp0dos in pdoddr.inp contracted decomposition by nkat= 2 NO ik at l 1 1 ga 0 2 1 ga 1 5 2 as 0 6 2 as 1 The actual n of lm components calculated = 4 N of Bloch functions with G block 3 renumbering 61-0.6 1.0 150.0 120.0 1.0 10.0 0.376 1 4 1 2 3 4 pdos of GaAs 2: Flow of the parameters for pdos calculation 6

3.3.1 pwbcd DOS pwbcd bcd.para OPTION BEGIN decompdos ON OPTION END pwbcd DOS dos gaas.out DOS ========================= Decomposition of DOS parameters maxcmp : 8 The array dimension for pdos Write this number for ncmp0dos in pdoddr.inp contracted decomposition by nkat = 2 NO ik at l 1 1 ga 0 2 1 ga 1 5 2 as 0 6 2 as 1 The actual n of lm components calculated = 4 N of Bloch functions with G block 3 Total number of Bloch functions = 15 1 1-1 2 2-9 3 10-15 Type of atomic orbital: psuedo-wavefunction DOS maxcmp nkat s p d f maxcmp = nkat 4 (9) pdosdr s p d f s p d f 0 DOS Ga4s Ga4p As4s As4p 1 2 5 6 fort.12 fort.13 ik dos gaas.out ϕ a lm ϕ a l m ϕ a lm δl l,m m 7

Normalization factor Normality of atom 1 1.36E-01 6.11E-20 5.90E-20 6.10E-20 2.33E-20 2.67E-02 1.34E-19 7.35E-19 2.82E-20 1.34E-19 2.67E-02 1.01E-18 2.69E-20 7.35E-19 1.01E-18 2.67E-02 Normality of atom 2 9.50E-02 1.61E-19 1.63E-19 1.56E-19 4.69E-20 5.17E-02 3.93E-19 1.34E-18 4.83E-19 3.93E-19 5.17E-02 2.11E-18 4.41E-20 1.34E-18 2.09E-18 5.17E-02 ϕ a l m ϕ a lm spx p y p z Ga As sp x p y p z ϕ a l m ϕ b lm Orthgonality Combination atom 1-2 8.55E-02 9.31E-11 9.31E-11 9.31E-11 9.86E-11 7.66E-03 3.69E-10 3.69E-10 9.86E-11 3.69E-10 7.66E-03 3.69E-10 9.86E-11 3.69E-10 3.69E-10 7.66E-03 a b E ab Slater Koster a b s p E s,x = αv spσ (10) (α, β, γ) E s,x (R 1, R 2 ) 0 A B 3: (Left) a combination of atom A and B. (Right) atomic orbital representation in a crystal 8

R R = R l + R b R l R b (lb) (lmn, b) l = (lmn) pwbcd R b R l l zincblende E s,x (1, 2) E s,x ((000, 1), (000, 2)) E s,x = E s,x ((0, 1), (000, 2)) + E s,x ((0, 1), ( 1 10, 2))+ E s,x ((0, 1), ( 10 1, 2)) + E s,x ((0, 1), (0 1 1, 2)) (11) 10 3.3.2 pdosdr pdosdr pdosdr.inp gaas. NONM 4 4 4 8 4 1 Ga4s 2 Ga4p 5 As4s 6 As4p -0.6 1.0 0.001 8 1 12 3.3.1 pwbcd 1 pdosdr Osaka2k DOS MAXCMP NCOMP FORTRAN 9

pdos of GaAs 5 4 States/Ry. 3 2 1-0.6-0.4-0.2 0.0 0.2 0.4 0.6 0.8 1.0 Energy \Ry.\ 4: Partial DOS of GaAs. DOS 9 GaAs Ga As s p d f MAXCMP DOS Ga4s Ga4p As4s As4p NCOMP DOS pdos *.prim Number of atom species 2 No Name Zat Zval 1 ga 31 3 2 as 33 5 Kind of atoms 2 Number of atoms 2 L.L. AND U.U. VALENCE ELEMENT 1 1 3.0000 1 ga 2 2 5.0000 2 as Ga As nkat nkat 2 nspec p f dos *.out 2 nkmax0dos 6 10

1: input form of pdosdr.inp. When MAXCMP=0, specification NCOMP is not required. NAME MAGNET NX, NY, NZ MAXCMP (NCOMP ESTART, ENEND, DE NELEC, NB1, NB2 description name of the crystal with a period specify the magnetic state (NONM, MAGN, SPIN) segments of BZ dimension of decomposed orbitals number of selected orbitals followed by each name of selected orbitals) energy scale begin at E =ESTART end at E =ENEND with spacing DE number of electrons spanning from band NB1 to NB2 Number of atom species Decomposition of DOS parameters maxcmp : 8 contracted decomposition by nkat = 2 NO ik at l 1 1 ga 0 2 1 ga 1 5 2 as 0 6 2 as 1 pdosdr.inp pdosdr fort.13 DOS DOS pdosdr.inp pdos DOS pdos 3.3.3 aydosp aydosp pdosdr fort.13 PS aydosp.inp 61-0.6 1.0 150.0 120.0 20.0 5.0 0.376 1 11

4 1 2 3 4 DOS of GaAs 2: input form of aydosp.inp IFIL EO, EM, XM, YM, DDOS, DOSM, EF, ISPIN NLINE, JLINE(NLINE) D description specify file number minimum and maximum of energy scale of x- and y- axes (mm) the tick and full scale of DOS Fermi level and spin status number of pdos lines followed by each pdos specification title DOS pdosdr fort.13 pdosdr.inp fort.13 DOS DOS 0 NLINE, JLINE(NLINE) no SPIN 1 0 -> 1 data; total DOS only 2 0 2 -> 2 data; total DOS and a partial DOS of #2 3 1 3 4 -> 3 data: 3 partial DOSs of #1, 3, and 4 SPIN 2 0 1 -> 2 data: up and down total DOSs DOS 4 3.4 ϕ k,alm (r) = R exp[ik (R + R a )] ϕ κ lm (r R R a) (12) k 12 4 DOS 12 12

pdos of GaAs States/Ry. 10 9 8 7 6 5 4 3 2 1-0.6-0.4-0.2 0.0 0.2 0.4 0.6 0.8 1.0 Energy \Ry.\ 5: Partial DOS of GaAs. ψ nl 12 k k 6 k 1st BZ k + G G G {Il κ (q)} k + G k + G The actual n of lm components calculated = 4 N of Bloch functions with G block 3 Total number of Bloch functions = 15 1 1-1 2 2-9 3 10-15 k + G 5 4 DOS k + G s p 13

G X k 6: Bloch sum of s orbital for excited states and s band in the band structure. 3.5 pdos pdos 7 ψ k ϕ κ lm ψ k ϕ κ lm 2 4 m ψ k ϕ κ lm 2 (13) m m ψ k ϕ κ lm (14) 7 4 pdosdr k pdosdr DOS Tetrahedron DOS pdosdr k Osaka2k 14

States/Ry. 5 4 3 2 1 pdos of GaAs sum of abs^2 States/Ry. 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 pdos of GaAs sqrt sum -0.6-0.4-0.2 0.0 0.2 0.4 0.6 0.8 1.0 Energy \Ry.\ -0.6-0.4-0.2 0.0 0.2 0.4 0.6 0.8 1.0 Energy \Ry.\ 7: Comparison of two ways of pdos. The left is the sum of square of the matrix element, while the right is the sum of absolute value of the elements. pwbcd pdosdr k 4 3: Appropriate mesh points between pwbcd and pdosdr crystal ndiv notes system pwbcd pdosdr on pdosdr P n n n should be even F 2n n I 2n n C 2n (n, n, 2n) R 3n n monoclinic orthorhombic pdosdr k pwbcd pdosdr k pdosdr rhombohedral system pdosdr fort.2 k NDFAC= 1 ISO= 1 15

1 0 0 0 6 1 GM 1 1 2 21 1 0 0 0 6 1 GM 2 1 2 7 2 0 0-3 6 1 LD 1 1 4 37 2 0 0-3 6 1 LD 2 1 4 12 2 0 0-3 6 1 LD 3 2 4 37 3 0 1-1 6 1 YP 1 1 6 37 3 0 1-1 6 1 YP 2 1 6 37 4 1 0-2 6 1 XP 1 1 6 37 4 1 0-2 6 1 XP 2 1 6 37 5 0 1-4 6 1 YP 1 1 6 37 5 0 1-4 6 1 YP 2 1 6 37... 31 0 3 6 6 1 F 4 1 3 37 32 2 1-8 6 1 GN 1 1 12 37 NBAND= 37 1 37 pwbcd 6 6 6 pdosdr pdosdr k 2 2 2 GENERATED KPOINT NO KX, KY, KZ 1 0 0 0 2 1 2 0 0 1 2 2 3 0 1 0 2 20 4 0 1 1 2 24 5 0 2 0 2 10 6 0 2 1 2 21 7 1 0 0 2 20 8 1 0 1 2 25 9 1 1 0 2 31 10 1 1 1 2 24 11 1 2 0 2 20 12 1 2 1 2 24 13 2 0 0 2 10 14 2 0 1 2 2 15 2 1 0 2 20 16 2 1 1 2 25 17 2 2 0 2 1 18 2 2 1 2 2 5 pwm pdosdr MAXCMP NCOMP l m bcd.para 16

4: Options for bcd.para Option Default Description toggle options decompdos OFF decomposition to partial DOS mdecomp0dos OFF decomposition to the m level value options targetatom0dos none atom specification to pdos ngblck0input 1 n of blocks G in Bloch sums cutoff0kc modify NHDIM with this factor A label of m components Osaka2k DOS m DOS B colors in aydosp aydosp c c c c c c c c c c 1:Black 2:Red 3:Green 4:Blue 5:Orange 6:lavender 7:pink 8:lime 9:yellow 10:bright Blue [1] Technical Report No. 28 [2] Technical Report No. 61 DOS [3] Technical Report No. 83 Osaka2k pdosdr k 17

5: definition of real-valued spherical harmonics in Osaka2k. The normalization factor is ignored. l m Y lm 0 0 1 1-1 x 0 y 1 z 2-2 xy -1 zx 0 z 2 x 2 y 2 1 yz 2 y 2 x 2 3-3 x(3y 2 x 2 ) -2 xyz -1 x(4z 2 x 2 y 2 ) 0 z(2z 2 3(x 2 + y 2 )) 1 y(4z 2 x 2 y 2 ) 2 z(y 2 x 2 ) 3 y(y 2 3x 2 ) 18