. p.1/11

Similar documents
. p.1/14

f(x,y) (x,y) x (x,y), y (x,y) f(x,y) x y f x (x,y),f y (x,y) B p.1/14

untitled

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re


-2-

橡点検記録(集約).PDF

7-12.dvi

ε

2007年08月号 022416/0812 会告

untitled

untitled


FX ) 2

FX自己アフリエイトマニュアル

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2

Untitled

2 1 x 1.1: v mg x (t) = v(t) mv (t) = mg 0 x(0) = x 0 v(0) = v 0 x(t) = x 0 + v 0 t 1 2 gt2 v(t) = v 0 gt t x = x 0 + v2 0 2g v2 2g 1.1 (x, v) θ

2.5 (Gauss) (flux) v(r)( ) S n S v n v n (1) v n S = v n S = v S, n S S. n n S v S v Minoru TANAKA (Osaka Univ.) I(2012), Sec p. 1/30

( 23 )

1.1 1 A

12 2 E ds = 1 ρdv ε 1 µ D D S S D B d S = 36 E d B l = S d S B d l = S ε E + J d S 4 4 div E = 1 ε ρ div B = rot E = B 1 rot µ E B = ε + J

II 2 II

untitled

Erased_PDF.pdf

b3e2003.dvi

δ ij δ ij ˆx ˆx ŷ ŷ ẑ ẑ 0, ˆx ŷ ŷ ˆx ẑ, ŷ ẑ ẑ ŷ ẑ, ẑ ˆx ˆx ẑ ŷ, a b a x ˆx + a y ŷ + a z ẑ b x ˆx + b

46 4 E E E E E 0 0 E E = E E E = ) E =0 2) φ = 3) ρ =0 1) 0 2) E φ E = grad φ E =0 P P φ = E ds 0



2.4 ( ) ( B ) A B F (1) W = B A F dr. A F q dr f(x,y,z) A B Γ( ) Minoru TANAKA (Osaka Univ.) I(2011), Sec p. 1/30


i

II 2 ( )

5


3345 チュートリアル 1 HP テンソル代数 テンソル解析 - - 連続体力学の数理的基礎 - 第 4 講テンソル解析 - テンソル場の微積分 - 登坂宣好 第 4 講概要 2, 3 1 筆者紹介 1971 Engineering Science gradient divergence rota

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

F S S S S S S S 32 S S S 32: S S rot F ds = F d l (63) S S S 0 F rot F ds = 0 S (63) S rot F S S S S S rot F F (63)

sin.eps

B 38 1 (x, y), (x, y, z) (x 1, x 2 ) (x 1, x 2, x 3 ) 2 : x 2 + y 2 = 1. (parameter) x = cos t, y = sin t. y = f(x) r(t) = (x(t), y(t), z(t)), a t b.

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

_0212_68<5A66><4EBA><79D1>_<6821><4E86><FF08><30C8><30F3><30DC><306A><3057><FF09>.pdf

コロナ社 Q&A Question and Answer Q&A

応用数学特論.dvi

A

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

G:/SHIRAFUJI/テキスト類/EM1999/ALL/em99ps.dvi

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

微粒子合成化学・講義

I II Morse 1998

微粒子合成化学・講義

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.


CALCULUS II (Hiroshi SUZUKI ) f(x, y) A(a, b) 1. P (x, y) A(a, b) A(a, b) f(x, y) c f(x, y) A(a, b) c f(x, y) c f(x, y) c (x a, y b)

2

7

CG38.PDF

羽陵餘蟫

Kroneher Levi-Civita 1 i = j δ i j = i j 1 if i jk is an even permutation of 1,2,3. ε i jk = 1 if i jk is an odd permutation of 1,2,3. otherwise. 3 4

ユニセフ表紙_CS6_三.indd


5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)

all.dvi

25 II :30 16:00 (1),. Do not open this problem booklet until the start of the examination is announced. (2) 3.. Answer the following 3 proble

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

koji07-02.dvi

³ÎΨÏÀ

7. 曲面上の積分 (1) ここでは曲面上の積分を学びます. 微分幾何とは点の周りの状態を調べる学問 ( 曲面の局部理論 ) ですが, ガウス ボンネの定理が示すように曲面全体の状況すなわち大域的な内容を研究することも大切です. 曲面の大域的な内容を扱うには当然積分が必要です. ここでは曲面上の積分

,.,. 2, R 2, ( )., I R. c : I R 2, : (1) c C -, (2) t I, c (t) (0, 0). c(i). c (t)., c(t) = (x(t), y(t)) c (t) = (x (t), y (t)) : (1)

微分積分学2

2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n

A

II Time-stamp: <05/09/30 17:14:06 waki> ii

xy n n n- n n n n n xn n n nn n O n n n n n n n n

液晶の物理1:連続体理論(弾性,粘性)


1

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

ii 4 5 RLC 2 LC LC OTA, FDNR 6

housoku.dvi

numb.dvi

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

,.,, L p L p loc,, 3., L p L p loc, Lp L p loc.,.,,.,.,.,, L p, 1 p, L p,. d 1, R d d. E R d. (E, M E, µ)., L p = L p (E). 1 p, E f(x), f(x) p d

森林航測87号

all.dvi

日本内科学会雑誌第102巻第4号


1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

Morse ( ) 2014

2

( : December 27, 2015) CONTENTS I. 1 II. 2 III. 2 IV. 3 V. 5 VI. 6 VII. 7 VIII. 9 I. 1 f(x) f (x) y = f(x) x ϕ(r) (gradient) ϕ(r) (gradϕ(r) ) ( ) ϕ(r)

elemag.dvi

A


平成 22 年度 ( 第 32 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 ~8 22 月年 58 日開催月 2 日 ) V := {(x,y) x n + y n 1 = 0}, W := {(x,y,z) x 3 yz = x 2 y z 2

ユニセフ表紙_CS6_三.indd

Transcription:

. p.1/11

[ ] F(x,y,z) = (F 1 (x,y,z),f 2 (x,y,z),f 3 (x,y,z)) = F 1 i+f 2 j+f 3 k div F = F 1 x + F 2 y + F 3 z F (divergence). p.1/11

[ ] F(x,y,z) = (F 1 (x,y,z),f 2 (x,y,z),f 3 (x,y,z)) = F 1 i+f 2 j+f 3 k div F = F 1 x + F 2 y + F 3 z F (divergence) = i x + j y + k z ( ) div F = F. p.1/11

. p.2/11

F. p.2/11

F (x,y,z) h. p.2/11

F (x,y,z) h h 2{ F(x + h,y,z) i + F(x h,y,z) ( i) 2 2 +F(x,y + h,z) j + F(x,y h,z) ( j) 2 2 +F(x,y,z + h) k + F(x,y,z h ) ( k) + ( )} 2 2. p.2/11

F (x,y,z) h h 2{ F(x + h,y,z) i + F(x h,y,z) ( i) 2 2 +F(x,y + h,z) j + F(x,y h,z) ( j) 2 2 +F(x,y,z + h) k + F(x,y,z h ) ( k) + ( )} 2 2 =h 2{( F 1 (x,y,z)+ hf 2 1x(x,y,z) ) ( F 1 (x,y,z)+( h)f 2 1x(x,y,z) ) + ( F 2 (x,y,z)+ hf 2 2y(x,y,z) ) ( F 2 (x,y,z)+( h)f 2 2y(x,y,z) ) + ( F 3 (x,y,z)+ hf 2 3z(x,y,z) ) ( F 3 (x,y,z)+( h)f 2 3z(x,y,z) )} +( ). p.2/11

F (x,y,z) h h 2{ F(x + h,y,z) i + F(x h,y,z) ( i) 2 2 +F(x,y + h,z) j + F(x,y h,z) ( j) 2 2 +F(x,y,z + h) k + F(x,y,z h ) ( k) + ( )} 2 2 =h 2{( F 1 (x,y,z)+ hf 2 1x(x,y,z) ) ( F 1 (x,y,z)+( h)f 2 1x(x,y,z) ) + ( F 2 (x,y,z)+ hf 2 2y(x,y,z) ) ( F 2 (x,y,z)+( h)f 2 2y(x,y,z) ) + ( F 3 (x,y,z)+ hf 2 3z(x,y,z) ) ( F 3 (x,y,z)+( h)f 2 3z(x,y,z) )} +( ) = h 3 div F+( ). p.2/11

h 3 h 0. p.3/11

h 3 h 0 (x,y,z). p.3/11

h 3 h 0 (x,y,z) div F(x,y,z). p.3/11

h 3 h 0 (x,y,z) div F(x,y,z) [ ]. p.3/11

h 3 h 0 (x,y,z) div F(x,y,z) [ ]. p.4/11

h 3 h 0 (x,y,z) div F(x,y,z) [ ] ρ(x,y,z) E(x,y,z) E = 1 ε 0 ρ ε 0 ( ). p.4/11

[ ] f(x,y,z) f = div (grad f) = ( f). p.5/11

[ ] f(x,y,z) f = div (grad f) = ( f) = 2 x + 2 2 y + 2 2 z (Laplacian) 2. p.5/11

[ ] f(x,y,z) f = div (grad f) = ( f) = 2 x + 2 2 y + 2 2 z (Laplacian) 2 [ ]. p.5/11

[ ] f(x,y,z) f = div (grad f) = ( f) = 2 x + 2 2 y + 2 2 z (Laplacian) 2 [ ] T(x,y,z). p.5/11

[ ] f(x,y,z) f = div (grad f) = ( f) = 2 x + 2 2 y + 2 2 z (Laplacian) 2 [ ] T(x,y,z). p.5/11

[ ] f(x,y,z) f = div (grad f) = ( f) = 2 x + 2 2 y + 2 2 z (Laplacian) 2 [ ] T(x,y,z) h = κ grad T ( κ ). p.5/11

[ ] f(x,y,z) f = div (grad f) = ( f) = 2 x + 2 2 y + 2 2 z (Laplacian) 2 [ ] T(x,y,z) h = κ grad T ( κ ) div( κ grad T) = κ T ( +κ T). p.5/11

[ ] f(x,y,z) f = div (grad f) = ( f) = 2 x + 2 2 y + 2 2 z (Laplacian) 2 [ ] T(x,y,z) h = κ grad T ( κ ) div( κ grad T) = κ T ( +κ T) ( ) T t = κ T. p.5/11

[ ] ( F F (rotation) F3 rot F = y F 2 F 1 z, z F 3 F 2 x, x F ) 1 = F y. p.6/11

[ ] ( F F (rotation) F3 rot F = y F 2 F 1 z, z F 3 F 2 x, x F ) 1 = F y. p.6/11

[ ] ( F F (rotation) F3 rot F = y F 2 F 1 z, z F 3 F 2 x, x F ) 1 = F y z y-z (x,y,z) h. p.6/11

[ ] ( F F (rotation) F3 rot F = y F 2 F 1 z, z F 3 F 2 x, x F ) 1 = F y z y-z (x,y,z) h z h { F 2 (x+ h,y,z) F 2 2(x h,y,z) F 2 1(x,y+ h,z)+f 2 1(x,y h,z)} +( ) 2. p.6/11

[ ] ( F F (rotation) F3 rot F = y F 2 F 1 z, z F 3 F 2 x, x F ) 1 = F y z y-z (x,y,z) h z h { F 2 (x+ h,y,z) F 2 2(x h,y,z) F 2 1(x,y+ h,z)+f 2 1(x,y h,z)} +( ) 2 =h {( F 2 (x,y,z)+ hf 2 2x(x,y,z) ) ( F 2 (x,y,z)+( h)f 2 2x(x,y,z) )} h {( F 1 (x,y,z)+ hf 2 1y(x,y,z) ) ( F 1 (x,y,z)+( h)f 2 1y(x,y,z) )} +( ). p.6/11

[ ] ( F F (rotation) F3 rot F = y F 2 F 1 z, z F 3 F 2 x, x F ) 1 = F y z y-z (x,y,z) h z h { F 2 (x+ h,y,z) F 2 2(x h,y,z) F 2 1(x,y+ h,z)+f 2 1(x,y h,z)} +( ) 2 =h {( F 2 (x,y,z)+ hf 2 2x(x,y,z) ) ( F 2 (x,y,z)+( h)f 2 2x(x,y,z) )} h {( F 1 (x,y,z)+ hf 2 1y(x,y,z) ) ( F 1 (x,y,z)+( h)f 2 1y(x,y,z) )} +( ) = h 2 {F 2x (x,y,z) F 1y (x,y,z)} +( ). p.6/11

h 2 h 0. p.7/11

h 2 h 0 (x,y,z) z- F 2 x F 1 y. p.7/11

h 2 h 0 (x,y,z) z- F 2 x F 1 y( F3 rot F = y F 2 F 1 z, z F 3 F 2 x, x F ) 1 y. p.7/11

h 2 h 0 (x,y,z) z- F 2 x F 1 y( F3 rot F = y F 2 F 1 z, z F 3 F 2 x, x F ) 1 y [ ]. p.7/11

h 2 h 0 (x,y,z) z- F 2 x F 1 y( F3 rot F = y F 2 F 1 z, z F 3 F 2 x, x F ) 1 y [ ]. p.8/11

h 2 h 0 (x,y,z) z- F 2 x F 1 y( F3 rot F = y F 2 F 1 z, z F 3 F 2 x, x F ) 1 y [ ] E = ρ ε 0, E = B t, B = 0, c2 B = E t + 1 ε 0 J E : B : J : ε 0 : c :. p.8/11

[ ]. p.9/11

[ ] F F = gradf f f F. p.10/11

[ ] F F = gradf f f F F F = rot f f f F. p.10/11

p.60 7 p.68 14. p.11/11