(MRI) 10. (MRI) (MRI) : (NMR) ( 1 H) MRI ρ H (x,y,z) NMR (Nuclear Magnetic Resonance) spectrometry: NMR NMR s( B ) m m = µ 0 IA = γ J (1) γ: :Planck c

Similar documents
m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d

振動と波動

pdf

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

( ) ( )

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

7-12.dvi

Gmech08.dvi

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x


TOP URL 1

2 1 x 1.1: v mg x (t) = v(t) mv (t) = mg 0 x(0) = x 0 v(0) = v 0 x(t) = x 0 + v 0 t 1 2 gt2 v(t) = v 0 gt t x = x 0 + v2 0 2g v2 2g 1.1 (x, v) θ

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )


. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

4.6: 3 sin 5 sin θ θ t θ 2t θ 4t : sin ωt ω sin θ θ ωt sin ωt 1 ω ω [rad/sec] 1 [sec] ω[rad] [rad/sec] 5.3 ω [rad/sec] 5.7: 2t 4t sin 2t sin 4t

構造と連続体の力学基礎

Microsoft Word - 11問題表紙(選択).docx

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

Note.tex 2008/09/19( )

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

K E N Z OU

( ) ,

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2

66 σ σ (8.1) σ = 0 0 σd = 0 (8.2) (8.2) (8.1) E ρ d = 0... d = 0 (8.3) d 1 NN K K 8.1 d σd σd M = σd = E 2 d (8.4) ρ 2 d = I M = EI ρ 1 ρ = M EI ρ EI

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

A

5 H Boltzmann Einstein Brown 5.1 Onsager [ ] Tr Tr Tr = dγ (5.1) A(p, q) Â 0 = Tr Âe βĥ0 Tr e βĥ0 = dγ e βh 0(p,q) A(p, q) dγ e βh 0(p,q) (5.2) e βĥ0

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)

液晶の物理1:連続体理論(弾性,粘性)

CG38.PDF

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

Gmech08.dvi

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

Z: Q: R: C:

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H


ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d


2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

,

all.dvi

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

F = 0 F α, β F = t 2 + at + b (t α)(t β) = t 2 (α + β)t + αβ G : α + β = a, αβ = b F = 0 F (t) = 0 t α, β G t F = 0 α, β G. α β a b α β α β a b (α β)


,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

Gmech08.dvi

KENZOU

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

F S S S S S S S 32 S S S 32: S S rot F ds = F d l (63) S S S 0 F rot F ds = 0 S (63) S rot F S S S S S rot F F (63)

29

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

総研大恒星進化概要.dvi

2011de.dvi

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

chap1.dvi

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc


2

sec13.dvi

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

Untitled


( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

 NMRの信号がはじめて観測されてから47年になる。その後、NMRは1960年前半までPhys. Rev.等の物理学誌上を賑わせた。1960年代後半、物理学者の間では”NMRはもう死んだ”とささやかれたということであるが(1)、しかし、これほど発展した構造、物性の


A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

l µ l µ l 0 (1, x r, y r, z r ) 1 r (1, x r, y r, z r ) l µ g µν η µν 2ml µ l ν 1 2m r 2mx r 2 2my r 2 2mz r 2 2mx r 2 1 2mx2 2mxy 2mxz 2my r 2mz 2 r

d > 2 α B(y) y (5.1) s 2 = c z = x d 1+α dx ln u 1 ] 2u ψ(u) c z y 1 d 2 + α c z y t y y t- s 2 2 s 2 > d > 2 T c y T c y = T t c = T c /T 1 (3.

I


(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,,

1

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

[1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin Clifford Spin 10 A 12 B 17 1 Cliffo

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,,

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1

Microsoft Word - 計算力学2007有限要素法.doc

重力方向に基づくコントローラの向き決定方法

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

吸収分光.PDF

2.5 (Gauss) (flux) v(r)( ) S n S v n v n (1) v n S = v n S = v S, n S S. n n S v S v Minoru TANAKA (Osaka Univ.) I(2012), Sec p. 1/30

B ver B

dvipsj.8449.dvi

08-Note2-web

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

30

Transcription:

10. : (NMR) ( 1 H) MRI ρ H (x,y,z) NMR (Nuclear Magnetic Resonance) spectrometry: NMR NMR s( B ) m m = µ 0 IA = γ J (1) γ: :Planck constant J: Ĵ 2 = J(J +1),Ĵz = J J: (J = 1 2 for 1 H) I m A 173/197

10.1 B = 0 B 0 - - - + + + + + B = 0 B 0 E 1/2 E 0 E +1/2 m = 0 m 0 B = B 0 e z 0 m(t) ( ) m(t) t E ± 1 2 = E 0 1 2 γ B Boltzmann n 1 = n 2 + 1e E kt 2 B = 0 n + 1 > n m (i) 2 1 2 ( n/n 5ppm) M = m = 0 M = m = m ez 0 174/197

10.2 ( ( dv v B, v e m) ) dm B = B 0 e z ( B 0 = const) = γm B (2) e z (Eq.(2)) m (Eq.(2)) e z dm = 0 m z = const (3) m dm = 1 dm m = 0 2 m dm (4) m 2 = const (5) (Independent of B ) d(eq.(2)) d 2 m 2 = γ dm B =(γb 0 ) 2 (m e z ) e z =(γb 0 ) 2 ( m+m z e z ) (6) 175/197

e x (Eq.(6)) and e y (Eq.(6)) t = 0 m = (m,0,m z ) Eq.(7) at t = 0 d 2 m n 2 +(γb 0 ) 2 m n = 0 (n {x,y}) m n = C n cosω 0 t+s n sinω 0 t (7) ω 0 = γb 0 (8) ω 0 : C x = S y = m C y = S x = 0 e x (Eq.(2)) : ( dm x = γb 0 m y ) Eq.(7) ω 0 ( C x sinω 0 t+s x cosω 0 t) = γb 0 }{{} =ω 0 (C y cosω 0 t+s y sinω 0 t) C x = S y, S x = C y m x = +m cosω 0 t (9) m y = m sinω 0 t (10) m 2 = m 2 +m2 z = const m z = ± m 2 m 2 (11) 176/197

dm = γm (B 0 e z ) m x = +m cosω 0 t m y = m sinω 0 t m z = ± m 2 m 2 (12) y Y x ω 0 t X { ex (t) = cos(ω 0 t)e x sin(ω 0 t)e y m z z e Y (t) = sin(ω 0 t)e x +cos(ω 0 t)e y (13) x y x y m(t) = m e X (t)+m z e z (14) m z 177/197

(NMR) 10.3 (NMR) (ω = ω 0 ) B(t) = B 0 +B 1 (t) (15) B 0 B 1 B 0 = B 0 e z Y Y B 1 (t) = B 1Y e Y (t) (16) ( ) X X B1 (t) B 0 B 1Y = const, B 1X = 0 z m 0 m(t) m(t) =m X (t)e X (t)+m Y (t)e Y (t)+m z (t)e z (17) (m(0) = m e X +m 0z e z ) 178/197

(NMR) m X m Y m z de X de γm B = 0 B 1Y B 0 Y = ω 0 e Y, = +ω 0 e X e X e Y e z (18) m Y B 0 m z B 1Y = γ m X B 0 +γ 0 0 +m X B 1Y dm = dm ω 0 m Y ω 0 m X 0 = γm B + dm X dm Y dm z dm X dm Y dm z = γb 1Ym z 0 +γb 1Y m X Y : m Y(t) = 0 ( m Y(0) = 0) X,z :? 179/197

(NMR) B = B 0 e z B = B 0 e z +B 1Y e Y (t) dm x dm X +γb 0 m y γb 1Y m z dm y = γb 0 m x dm Y = 0 dm z 0 dm z +γb 1Y m X z Y : ω 0 = γb 0 :ω 1Y = γb 1Y B = B 0 e z +B 1Y e Y (t) m B 0 z B 1Y ( ) Y 180/197

(NMR) m B 1 B 0 B = B0 m X e X m (i) = m (i) X e (i) X +m(i) z e z e (i) X ) e(i X, m(i) z B 1 0 B (i) 1X 0 B 1 (t) = B (i) 1X e(i) X (t)+b(i) 1Y e(i) Y (t) (i) B 1X : m (i) B (i) 1X e(i) X dm(i) Y = m (i) z B(i) 1X e(i) Y m(i) Y B(i) 1X e z = γm (i) z B (i) 1X 0 m (i) B 1 ( m = const) M = m = m z e z B = B0 +B 1 X B 1 m (i ) = m (i) X e X +m z (i) e z X M = m = m X e X +m z e z B 1 = 0 B 1 0 181/197

(NMR) B = B 0 B 1 B 1 B 0 B 1 M B 1 M B 1 B 1 Observed 182/197

10.4. ( - ) T1, T 2 dm z = M z M 0 T 1 M z (t) = M 0 (1 e t T 1)+M z (0)e t T 1 z X m t ( - ) Mz dm = M T 2 M (t) = M (0)e t T 2 Y X m M t 183/197

10.5 (1) z G z e z (B e z ) B z (z) = (B 0 +G z (z z 0 ))e z B ω(z) = ω 0 +γg z (z z 0 ) 0 z B 1 (t) cos(ω 0 t) ( ) ω 0 t z = z 0 B z z B 0 +G z z B 0 Resonance with B 1 B 0 G z z 184/197

(2) z (x,y) G ξ e ξ (B z e z ) B z (ξ) = (B 0 +G ξ ξ)e z, (e ξ = cosθe x +sinθe y ) ξ ω 0 (ξ) = γ(b 0 +G ξ ξ) = ω 0 +γg ξ ξ η B z B 0 : ρ(x,y) s(t,θ) = ρ(x,y)e jω 0 (ξ(x,y))t dxdy F t ( ) S(ω,θ) = ρ(ξ(ω),θ)dη ( ξ(ω) = ω ω 0 γg ξ ) y θ ξ x ω 0 (ξ) = ω 0 +γg ξ ξ CT 185/197

s(t,θ) ξ ξ(x,y;θ), η η(x,y;θ) ω 0 (ξ) = ω 0 +γg ξ ξ ω 0 (x,y,θ) s(t,θ) = y x ρ(x,y)ejω 0 t dxdy = η S(ω,θ) = s(t,θ)e jωt = t = η = η ξ ρ(ξ,η) t ej(ω 0+γG ξ ξ ω)t dξdη η ξ ρ(ξ,η)ejω 0 t dξdη ξ ρ(ξ,η)ej(ω 0+γG ξ ξ ω)t dξdη ρ(ξ,η)δ(ω 0 +γg ξ ξ ω)dξdη ξ = ( { ρ(ξ,η)dη L η r(ξ,η;θ) ξ = ω ω }) 0 L η γg ξ S(ω,θ) = ρ(ξ(ω),θ)dη, ξ(ω) = ω ω 0 γg ξ 186/197