d dt P = d ( ) dv G M vg = F M = F (4.1) dt dt M v G P = M v G F (4.1) d dt H G = M G (4.2) H G M G Z K O I z R R O J x k i O P r! j Y y O -

Similar documents
6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4


m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d

δ ij δ ij ˆx ˆx ŷ ŷ ẑ ẑ 0, ˆx ŷ ŷ ˆx ẑ, ŷ ẑ ẑ ŷ ẑ, ẑ ˆx ˆx ẑ ŷ, a b a x ˆx + a y ŷ + a z ẑ b x ˆx + b

40 6 y mx x, y 0, 0 x 0. x,y 0,0 y x + y x 0 mx x + mx m + m m 7 sin y x, x x sin y x x. x sin y x,y 0,0 x 0. 8 x r cos θ y r sin θ x, y 0, 0, r 0. x,

3 filename=quantum-3dim110705a.tex ,2 [1],[2],[3] [3] U(x, y, z; t), p x ˆp x = h i x, p y ˆp y = h i y, p z ˆp z = h

2.4 ( ) ( B ) A B F (1) W = B A F dr. A F q dr f(x,y,z) A B Γ( ) Minoru TANAKA (Osaka Univ.) I(2011), Sec p. 1/30

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0


Gmech08.dvi

sec13.dvi

応力とひずみ.ppt

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

ver F = i f i m r = F r = 0 F = 0 X = Y = Z = 0 (1) δr = (δx, δy, δz) F δw δw = F δr = Xδx + Y δy + Zδz = 0 (2) δr (2) 1 (1) (2 n (X i δx

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

B ver B


変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1.

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

K E N Z OU

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2


1


Gmech08.dvi

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

1

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

77

II 2 II

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

Fr

ii

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

1 : f(z = re iθ ) = u(r, θ) + iv(r, θ). (re iθ ) 2 = r 2 e 2iθ = r 2 cos 2θ + ir 2 sin 2θ r f(z = x + iy) = u(x, y) + iv(x, y). (x + iy) 2 = x 2 y 2 +

i

(4) P θ P 3 P O O = θ OP = a n P n OP n = a n {a n } a = θ, a n = a n (n ) {a n } θ a n = ( ) n θ P n O = a a + a 3 + ( ) n a n a a + a 3 + ( ) n a n

IMO 1 n, 21n n (x + 2x 1) + (x 2x 1) = A, x, (a) A = 2, (b) A = 1, (c) A = 2?, 3 a, b, c cos x a cos 2 x + b cos x + c = 0 cos 2x a

7-12.dvi


2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP

数値計算:常微分方程式

lecture

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

96 7 1m = N 1A a C (1) I (2) A C I A A a A a A A a C C C 7.2: C A C A = = µ 0 2π (1) A C 7.2 AC C A 3 3 µ0 I 2 = 2πa. (2) A C C 7.2 A A


,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.


R = Ar l B r l. A, B A, B.. r 2 R r = r2 [lar r l B r l2 ]=larl l B r l.2 r 2 R = [lar l l Br ] r r r = ll Ar l ll B = ll R rl.3 sin θ Θ = ll.4 Θsinθ

untitled

1.1 1 A

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π

notekiso1_09.dvi

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2

2.5 (Gauss) (flux) v(r)( ) S n S v n v n (1) v n S = v n S = v S, n S S. n n S v S v Minoru TANAKA (Osaka Univ.) I(2012), Sec p. 1/30


液晶の物理1:連続体理論(弾性,粘性)

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2


120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2

dynamics-solution2.dvi

III No (i) (ii) (iii) (iv) (v) (vi) x 2 3xy + 2 lim. (x,y) (1,0) x 2 + y 2 lim (x,y) (0,0) lim (x,y) (0,0) lim (x,y) (0,0) 5x 2 y x 2 + y 2. xy x2 + y

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

C : q i (t) C : q i (t) q i (t) q i(t) q i(t) q i (t)+δq i (t) (2) δq i (t) δq i (t) C, C δq i (t 0 )0, δq i (t 1 ) 0 (3) δs S[C ] S[C] t1 t 0 t1 t 0

,2,4

2012専門分科会_new_4.pptx

2 Chapter 4 (f4a). 2. (f4cone) ( θ) () g M. 2. (f4b) T M L P a θ (f4eki) ρ H A a g. v ( ) 2. H(t) ( )

zz + 3i(z z) + 5 = 0 + i z + i = z 2i z z z y zz + 3i (z z) + 5 = 0 (z 3i) (z + 3i) = 9 5 = 4 z 3i = 2 (3i) zz i (z z) + 1 = a 2 {

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

2011de.dvi

Part () () Γ Part ,

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v

f : R R f(x, y) = x + y axy f = 0, x + y axy = 0 y 直線 x+y+a=0 に漸近し 原点で交叉する美しい形をしている x +y axy=0 X+Y+a=0 o x t x = at 1 + t, y = at (a > 0) 1 + t f(x, y

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

 NMRの信号がはじめて観測されてから47年になる。その後、NMRは1960年前半までPhys. Rev.等の物理学誌上を賑わせた。1960年代後半、物理学者の間では”NMRはもう死んだ”とささやかれたということであるが(1)、しかし、これほど発展した構造、物性の

Note.tex 2008/09/19( )

数学Ⅲ立体アプローチ.pdf

.....Z...^.[ \..

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

(1) θ a = 5(cm) θ c = 4(cm) b = 3(cm) (2) ABC A A BC AD 10cm BC B D C 99 (1) A B 10m O AOB 37 sin 37 = cos 37 = tan 37

I: 2 : 3 +

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

1 (1) ( i ) 60 (ii) 75 (iii) 315 (2) π ( i ) (ii) π (iii) 7 12 π ( (3) r, AOB = θ 0 < θ < π ) OAB A 2 OB P ( AB ) < ( AP ) (4) 0 < θ < π 2 sin θ

高等学校学習指導要領

高等学校学習指導要領

A

08-Note2-web

ac b 0 r = r a 0 b 0 y 0 cy 0 ac b 0 f(, y) = a + by + cy ac b = 0 1 ac b = 0 z = f(, y) f(, y) 1 a, b, c 0 a 0 f(, y) = a ( ( + b ) ) a y ac b + a y

(MRI) 10. (MRI) (MRI) : (NMR) ( 1 H) MRI ρ H (x,y,z) NMR (Nuclear Magnetic Resonance) spectrometry: NMR NMR s( B ) m m = µ 0 IA = γ J (1) γ: :Planck c

Transcription:

44 4 4.1 d P = d dv M v = F M = F 4.1 M v P = M v F 4.1 d H = M 4.2 H M Z K I z R R J x k i P r! j Y y - XY Z I, J, K -xyz i, j, k P R = R + r 4.3 X Fig. 4.1 Fig. 4.1 ω P [ ] d d = + ω 4.4 [ ]

4 45 4.3 [ ṙ ] = v = Ṙ = Ṙ + ω r v + ω r 4.5 P dm P dp = vdm M = P = dp = v dm = v + ω r dm = v dm + ω r dm = M v 4.6 dm 4.1 H H = r dp = r vdm = r v + ω r dm = v r dm + r ω r dm = r ω r dm 4.7 ω r ω = p i + q j + r k, r = x i + y j + z k 4.8 ω r = qz ryi + rx pzj + py qxk 4.9 r ω r = { ypy qx zrx pz } i + { zqz ry xpy qx } j 4.7 I xx = H x H y H z y 2 + z 2 dm, I yy = + { xrx pz yqz ry } k 4.1 H = H x i + H y j + H z k 4.11 I xx I xy I xz p = I yx I yy I yz q I zx I zy I zz r 4.12 z 2 + x 2 dm, I zz = x 2 + y 2 dm 4.13 x, y, z moment of inertia 4.12 I xy = I yx = xy dm, I yz = I zy = yz dm, I zx = I xz = zx dm 4.14 product of inertia xz y I xy, I yz 4.12 { } [ ] { } H = I ω [ I ] inertia tensor 4.15

46 4.2 4.13 I xx = M κ 2 xx, I yy = M κ 2 yy, I zz = M κ 2 zz 4.16 y 2 + z 2 dm z 2 + x 2 dm x 2 + y 2 dm κ 2 xx =, κ 2 yy =, κ 2 zz = 4.17 M M M κ xx, κ yy, κ zz x, y, z gyrational radius z z B θ r y L D ' y x x Fig. 4.2 Fig. 4.3 Fig. 4.2 x = r sin θ cos φ y = r sin θ sin φ z = r cos θ d = r 2 sin θ dr dθ dφ ρ R I xx = y 2 + z 2 dm = ρ y 2 + z 2 d π = ρ R r 4 dr 2π π sin 2 θ sin 2 φ + cos 2 θ sin θ dθ dφ sin 3 θ dθ = 4 π 3, cos 2 θ sin θ dθ = 2 2π 3, sin 2 φ dφ = π, I xx = ρ R5 5 κ xx = R r 4 dr = R5 5 8π 3 = ρ 4 2 3 πr3 5 R2 M κ 2 xx 4.18 2 R.632R =.316 2R 4.19 5 R.632 I xx = I yy = I zz

4 47 L B D Fig. 4.3 x, y, z ρ I xx = y 2 + z 2 ρ d = ρld B3 D3 + ρlb 12 12 = M B2 + D 2 M κ 2 xx 4.2 12 Iyy = M L2 + D 2 M κ 2 yy, I zz = M L2 + B 2 M κ 2 zz 4.21 12 12 M = ρlbd D/B = 1, B/L = 1/5 4.21 κ xx.48b, κ yy = κ zz.294l 4.22 4.22 κ xx.35b κ yy κ zz.25l 4.1 L = 2a B = 2b D = 2c 3 x a 2 + y b 2 + z c 2 = 1 I xx, I yy, I zz c/b = 1, b/a = 1/5 x, y, z x/a = r cos θ, y/b = r sin θ cos φ, z/c = r sin θ sin φ r 1, θ π, φ 2π κ xx.316b, κ yy = κ zz.228l Fig. 4.4 -xyz r x, y, z xyz -x y z z z x x' r r z' P r' y' y Fig. 4.4 I zz = x 2 + y 2 dm = x + x 2 dm + y + y 2 dm = x 2 + y 2 dm + x 2 + y 2 dm + 2x x dm + 2y y dm = x 2 + y 2 M + I zz

48 I xx = I xx + M y 2 + z2, Ixy = I xy M x y I yy = I yy + M z 2 + x2, Iyz = I yz M y z I zz = I zz + M x 2 + y2, Izx = I zx M z x 4.23 4.3 Fig. 4.5 compound pendulum θ h Mg Fig. 4.5 = h θ M I 4.2 I θ = M gh sin θ 4.24 κ I = M κ 2 4.24 M κ2 h θ = M g sin θ 4.25 l ml θ = mg sin θ l = κ2 h 4.26 l T = 2π g = 2π κ I = 2π gh M gh 4.27 κ = T 2π gh 4.28 h T κ 4.23 I = I M h 2 = M κ 2 h 2 M κ 2 4.29 κ = κ 2 h 2 4.4 -xyz P 4.5 v = v + ω r v 2 = v v = v 2 + ω r ω r + 2v ω r

4 49 T = 1 v 2 dm 2 = 1 2 M v2 + 1 ω r ω r dm + v ω 2 r dm = ω r ω r = ω r ω r r dm 4.3 4.31 4.3 T = 1 2 M v2 + 1 2 ω r ω r dm = 1 2 M v2 + 1 2 ω H = 1 2 M v2 + 1 2 { ω } T [ I ]{ ω } 4.32 H 4.7 4.15 { ω } T T 2 4.32 T U E = T + U = 4.33 v = h θ 4.29 T = 1 2 M v2 + 1 2 I θ 2 = 1 2 M h2 θ2 + 1 I M h 2 2 θ2 = 1 2 I θ 2 U = M gh 1 cos θ 4.33 4.34 1 2 I θ 2 + M gh 1 cos θ = C 1 2 I θ 2 M gh cos θ = C 4.35 4.24 4.24 θ I θ θ = M gh θ sin θ I 1 2 θ 2 = M gh cos θ + C 4.35 4.5 -xyz xy -XY Z X Y 2 1 F = F X I+F Y J R = X I+Y J a = ẌI + ŸJ 4.36

5 Y v x y u Y v j i R J I X X Fig. 4.6 z H x =, H y =, H z = I zz r = I zz 4.37 z Z k = K H = I zz k = I zz K 4.38 z M = M z k = M z K 4.1 4.2 M Ẍ = F X, M Ÿ = F Y, I zz = Mz 4.39 F X, F Y Y X 2 v = ui + vj i, j a = v = ui + u di dj + vj + v i, j 4.4 ω = rk = k di = ω i = k i = j dj = ω j = k j = i 4.4 4.41 a = u v i + v + u j 4.42 F = F x i + F y j H = I zz k, M = M z k M u v = F x M v + u = F y I zz = Mz 4.43

4 51 u, v, Ẋ + i Ẏ = u + i v e i X = X + Y = Y + t t u cos v sin u sin + v cos 4.44 4.43 F m = F xm, F ym,, M m =,, M zm v = u m, v m,, ω =,, r m x,, F xm = F x, F ym = F y, M zm = M z + F y x u m = u, v m = v x r, r m = r = } 4.45 4.43 m M u v x 2 = F x M v + u + x = Fy Izz + M x 2 + M x v + u = M z 4.46 z I zz + M x 2 4.23 4.6 3 6 4.1 4.2 [ I ] -xyz 4.1, 4.2 -XY Z v F v = ui + vj + wk, F = F x i + F y j + F z k 4.47 M 4.1 [ ] dv M + ω v = F 4.48 ω 4.8 ω = pi + qj + rk 4.48 M u + wq vr = F x M v + ur wp = F y M ẇ + vp uq = F z 4.49

52 4.43 M = M x i + M y j + M z k 4.2 [ dh ] + ω H = M 4.5 4.12 4.8 I xx ṗ + I zz I yy qr ṙ +I xy q rp + Ixz + pq + Iyz q 2 r 2 = M x I yy q + I xx I zz rp ṙ ṗ +I yz pq + Iyx + qr + Izx r 2 p 2 = M y I zz ṙ + I yy I xx pq ṗ +I zx qr + Izy q + rp + Ixy p 2 q 2 = M z 4.51 I xy = I yz = I xz = 4.51 I xx ṗ + I zz I yy qr = Mx I yy q + I xx I zz rp = My I zz ṙ + I yy I xx pq = Mz 4.52 X x 1 Y y 1 x 1 x 2 y 1 y 2 x 1 x 2 x 3 θ Z z 1 x 2 x 3, x y 1 y, θ y 1 1 y 2 x 1 y, 1 y 2 θ φ y φ z 1, z 2 θ φ z θ z 3 z 1, z z 3 2 z 1, z 2 Fig. 4.7

4 53 1 -XY Z -x 1 y 1 z 1 2 z 1 -x 2 y 2 z 2 3 y 2 θ -x 3 y 3 z 3 4 x 3 ϕ -xyz 1 2 4 u 1 v 1 w 1 u 2 v 2 w 2 u 3 v 3 w 3 = = = cos sin u 2 sin cos v 2 1 w 2 cos θ sin θ u 3 1 v 3 sin θ cos θ w 3 1 u cos ϕ sin ϕ v sin ϕ cos ϕ w 4.53 4.54 4.55 3 Ẋ u E = Ẏ Ż = E, θ, ϕ cos θ cos sin ϕ sin θ cos cos ϕ sin cos ϕ sin θ cos + sin ϕ sin cos θ sin sin ϕ sin θ sin + cos ϕ cos cos ϕ sin θ sin sin ϕ cos v w sin θ sin ϕ cos θ cos ϕ cos θ 4.56 4.57, θ, ϕ Eulerian angles u, v, w Ẋ, Ẏ, Ż X = t Ẋ, Y = t Ẏ, Z = t Ż 4.58 4.49, 4.52 u, v, w, p, q, r 4.57 z 1 = z 2 θ z 3 x 3 -x 3 y 3 z 3 sin θ,, cos θ θ y 2 = y 3 ϕ x 3 -x 3 y 3 z 3 ϕ sin θ, θ, cos θ -xyz p, q, r p q r = 1 cos ϕ sin ϕ sin ϕ cos ϕ ϕ sin θ θ cos θ

54 = 1 sin θ cos ϕ cos θ sin ϕ sin ϕ cos θ cos ϕ ϕ θ 4.59 ϕ 1 sin ϕ tan θ cos ϕ tan θ θ = cos ϕ sin ϕ sin ϕ sec θ cos ϕ sec θ p q r 4.6 ϕ, θ, p, q, r ϕ, θ, ϕ = t ϕ, θ = t θ, = t 4.61 4.56 4.58 ϕ, θ, 3 ϕ roll heel θ pitch trim yaw