sec13.dvi

Similar documents
Gmech08.dvi

Gmech08.dvi

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

A

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d

2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP

2 Chapter 4 (f4a). 2. (f4cone) ( θ) () g M. 2. (f4b) T M L P a θ (f4eki) ρ H A a g. v ( ) 2. H(t) ( )

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq


77

3 filename=quantum-3dim110705a.tex ,2 [1],[2],[3] [3] U(x, y, z; t), p x ˆp x = h i x, p y ˆp y = h i y, p z ˆp z = h

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l

δ ij δ ij ˆx ˆx ŷ ŷ ẑ ẑ 0, ˆx ŷ ŷ ˆx ẑ, ŷ ẑ ẑ ŷ ẑ, ẑ ˆx ˆx ẑ ŷ, a b a x ˆx + a y ŷ + a z ẑ b x ˆx + b

dynamics-solution2.dvi

II 2 II

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 -

TOP URL 1

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

i

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

応力とひずみ.ppt

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

2011de.dvi

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1.


1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb


F S S S S S S S 32 S S S 32: S S rot F ds = F d l (63) S S S 0 F rot F ds = 0 S (63) S rot F S S S S S rot F F (63)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

notekiso1_09.dvi

Note.tex 2008/09/19( )

R = Ar l B r l. A, B A, B.. r 2 R r = r2 [lar r l B r l2 ]=larl l B r l.2 r 2 R = [lar l l Br ] r r r = ll Ar l ll B = ll R rl.3 sin θ Θ = ll.4 Θsinθ

C:/KENAR/0p1.dvi

meiji_resume_1.PDF

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

( ) ,

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

( : December 27, 2015) CONTENTS I. 1 II. 2 III. 2 IV. 3 V. 5 VI. 6 VII. 7 VIII. 9 I. 1 f(x) f (x) y = f(x) x ϕ(r) (gradient) ϕ(r) (gradϕ(r) ) ( ) ϕ(r)

pdf

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( )

Gmech08.dvi

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x

sin.eps


W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

2.4 ( ) ( B ) A B F (1) W = B A F dr. A F q dr f(x,y,z) A B Γ( ) Minoru TANAKA (Osaka Univ.) I(2011), Sec p. 1/30

1 180m g 10m/s v 0 (t=0) z max t max t z = z max 1 2 g(t t max) 2 (6) r = (x, y, z) e x, e y, e z r = xe x + ye y + ze z. (7) v =

Untitled

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π

08-Note2-web

d (K + U) = v [ma F(r)] = (2.4.4) t = t r(t ) = r t 1 r(t 1 ) = r 1 U(r 1 ) U(r ) = t1 t du t1 = t F(r(t)) dr(t) r1 = F dr (2.4.5) r F 2 F ( F) r A r


l µ l µ l 0 (1, x r, y r, z r ) 1 r (1, x r, y r, z r ) l µ g µν η µν 2ml µ l ν 1 2m r 2mx r 2 2my r 2 2mz r 2 2mx r 2 1 2mx2 2mxy 2mxz 2my r 2mz 2 r

量子力学 問題

B ver B

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a


all.dvi

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

7-12.dvi

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

30

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

Chap11.dvi

I 1

Acrobat Distiller, Job 128

keisoku01.dvi

第10章 アイソパラメトリック要素

() (, y) E(, y) () E(, y) (3) q ( ) () E(, y) = k q q (, y) () E(, y) = k r r (3).3 [.7 ] f y = f y () f(, y) = y () f(, y) = tan y y ( ) () f y = f y

(1) D = [0, 1] [1, 2], (2x y)dxdy = D = = (2) D = [1, 2] [2, 3], (x 2 y + y 2 )dxdy = D = = (3) D = [0, 1] [ 1, 2], 1 {

KENZOU

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

zz + 3i(z z) + 5 = 0 + i z + i = z 2i z z z y zz + 3i (z z) + 5 = 0 (z 3i) (z + 3i) = 9 5 = 4 z 3i = 2 (3i) zz i (z z) + 1 = a 2 {

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ


( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )


untitled

K E N Z OU

[1.1] r 1 =10e j(ωt+π/4), r 2 =5e j(ωt+π/3), r 3 =3e j(ωt+π/6) ~r = ~r 1 + ~r 2 + ~r 3 = re j(ωt+φ) =(10e π 4 j +5e π 3 j +3e π 6 j )e jωt

d dt P = d ( ) dv G M vg = F M = F (4.1) dt dt M v G P = M v G F (4.1) d dt H G = M G (4.2) H G M G Z K O I z R R O J x k i O P r! j Y y O -


液晶の物理1:連続体理論(弾性,粘性)

Part () () Γ Part ,


z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

Transcription:

13 13.1 O r F R = m d 2 r dt 2 m r m = F = m r M M d2 R dt 2 = m d 2 r dt 2 = F = F (13.1) F O L = r p = m r ṙ dl dt = m ṙ ṙ + m r r = r (m r ) = r F N. (13.2) N N = R F 13.2 O ˆn ω L O r u u = ω r 1

1: ˆn (x, y, z) (x,y,z ) m O r m u O L L = r m u = m r (ω r )= ] m [rω 2 r (ω r ) L i = [ ] m rω 2 i r,i r,j ω j = m [ δ ij r 2 r,i r,j ] ω j = I ij ω j. I ij = m r 2 δ ij m r,i r,j I xx = m r 2 δ xx m x 2 = m (y 2 + z 2 ), I yy = m (x 2 + z 2 ), I zz = m (x 2 + y 2 ), I xy = m x a y,... (x,y,z ) I x x,i y y,i z z I ij = I i δ ij I : I = L i = I i δ ij ω j = I i ω i L = I ω. (13.3) I x I y I z 2

(x, y, z) I xx,i yy,i zz I x,i y,i z 13.3 ω T T = 1 m u 2 = 1 m u (ω r )= 1 2 2 2 ω m r a u = 1 2 ω L = 1 2 ω I ω (13.4) T = 1 2 ( ) I x ωx 2 + I y ωy 2 + I z ωz 2 13.4 13.4.1 m l m = 2.66 1 29 kg l =3.83 1 9 cm=38.3 Ȧ I x = I y = 1 2 ml2 =1.95 1 46 kg m 2, I z =. 13.4.2 a M I = ρr 2 2πrdr = 2π 4 ρa4 = 1 2 Ma2. I =(1/4)Ma 2 3

13.4.3 a M a/2 a/2 I = dx dyρ(x 2 + y 2 )= ρa4 a/2 a/2 6 = 1 6 Ma2 13.4.4 a M I = dx dy dzρ(x 2 + y 2 )dxdydz = 2 dx dy dzρ(x 2 + y 2 + z 2 )dxdydz 3 = 2ρ 4πr 2 drr 2 = 4πρa5 = 2 3 15 5 Ma2 2: l (x, y, z) (X, Y, Z) X = x, Y = y + l, Z = z. Z I = ρ dx dy dz(x 2 + Y 2 )=ρ dx dy dz(x 2 +(y + l) 2 ) = ρ dx dy dz(x 2 + y 2 )+l 2 ρ dx dy dz +2lρ dx dyy dz = I G + Ml 2 l Ml 2 4

13.5 : v ω M a I =(2/5)Ma 2 F N v L v L M dv = F, dt (13.5) dl dt = N I dω dt = N (13.6) F F P P v P = v aω v P v P 3: F h a 13.5.1 3 h F N = (h a)f (13.5,13.6) Δt Δt dv Δt M dt dt = F (t)dt v(δt) = S M = v. S I Δt dω Δt dt dt =(h a) F (t)dt ω(δt) = (h a)s I = ω. 5

4: v >aω Δt Δt v,ω P v aω = S ( 1 M ) (h a)am = 5S ( 7 I 2M 5 h ). a I =(2/5)Ma 2 h =(7/5)a v = aω 13.5.2 v >aω M dv dt = μmg, I dω dt = μmga. v,ω v(t) =v μgt, ω(t) =ω + Ma I μgt = ω + 5 2a μgt. v(t),aω(t) t 4 t =(2/7)(v aω )/(μg) v(t) =aω(t) 1 v <aω 6

2 7/5 3 (1) (2) (3) 4 13.6 O O θ I d2 θ = Mglsin θ. dt2 I O I I = I + Ml 2 : d 2 θ dt 2 = Mgl sin θ. I + Ml2 5: I = 13.7 m 2a x x ω L = r 1 m(ω r 1 )+r 2 m(ω r 2 ). r 1 = a cos θˆx + a sin θ(cos ωtŷ +sinωtẑ), r 2 = r 1, ω = ωˆx 6: ] [ ] L =2m [ωr1 2 (ω r 1 )r 1 =2ma 2 ω sin 2 θˆx sin θ cos θ(cos ωtŷ +sinωtẑ). 7

L ω ω = const., L const. dl dt =2ma2 ω 2 sin θ cos θ[sin ωtŷ cos ωtẑ] =N. N L ω N = ω L 13.8 26 12 7: (a) (b) ω 7(b) (x, y, z) ω ω ω = ω xˆx + ω y ŷ + ω z ẑ. (13.7) L L = I ω = I x ω xˆx + I y ω x ŷ + I z ω x ẑ (13.8) dl dt = N 8

(ˆx, ŷ, ẑ) (ω x,ω y,ω z ) dl dt = I xω xˆx + I x ω x ˆx + Iy ω y ŷ + I y ω y ŷ + Iz ω z ẑ + I z ω z ẑ. r ω ω r r ˆx, ŷ, ẑ dr dt = ω r. dˆx dt = ω ˆx, dŷ dt = ω ŷ, dẑ dt = ω ẑ. I x ω x ˆx + Iy ω y ŷ + Iz ω z ẑ = Lx (ω ˆx)+L y (ω ŷ)+l z (ω ẑ) =ω L dl dt = d L + ω L = N. (13.9) dt d L dt = I xω xˆx + I y ω y ŷ + I z ω z ẑ L = I ω dω x I x dt (I y I z )ω y ω z = N x, (13.1) dω y I y dt (I z I x )ω z ω x = N y, (13.11) dω z I z dt (I x I y )ω x ω y = N z. (13.12) 13.8.1 N = z ω z =Ω,ω x = ω y = ω x,ω y,ω z I x ω x = (I y I z )Ωω y, I y ω x = (I z I x )Ωω x, I z ω z. 9

ω x,ω y e σt I z >I x,i y I z <I x,i y σ 2 = (I y I z )(I z I x ) I x I y Ω 2. σ 2 = AΩ 2 (A>) σ = ±i AΩ ω x,ω y I z σ = ± AΩ 13.8.2 θ ω x z I x = I y = ma2 4, I z = ma2 2 ω x = ω sin θ, ω y =, ω z = ω cos θ. L = I ω = ma2 4 ω L ma2 ω sin θˆx + ω cos θẑ 2 8: θ ω x z cos = ω L ωl = 1+cos2 θ 1+3cos 2 θ. ω L θ =, or π/2 z x y 13.8.3 X, Y, Z x, y, z ω ω = θˆx + ϕẑ + Sẑ Ẑ Ẑ = sin θŷ +cosθẑ 9: 1

ω = θˆx sin θ ϕŷ +( ϕ cos θ + S)ẑ. I z = 1 2 Ma2 A, I x = I y = 1 4 Ma2 + Ml 2 C L = C( θˆx sin θ ϕŷ)+a( ϕ cos θ + S)ẑ. N = Mglsin θˆx. (13.13) θ θ = S ϕ L = ASẑ Z ω = ϕ d L dt + ω L = N (13.14) L d L/dt = (13.14) ω L = N (13.15) ω L ω L = ϕẑ ASẑ = AS ϕ sin θˆx (13.15) x AS ϕ sin θ = Mglsin θ ϕ = Mgl AS = 2gl a 2 S 13.8.4 23 27 26 12 (Vega) 11

O L z ξ θ x R dv df = GMρdV R 2 R R 1: R =(x, y + L cos θ, z + L sin θ), R 2 = x 2 + y 2 + z 2 + L 2 +2L (y cos θ + z sin θ), R L [1+ 1 ] (y cos θ + z sin θ), L 1 R 3 1 [ L 3 1 3 ] (y cos θ + z sin θ). L dn dn = R df = GMρdV R 3 L y sin θ z cos θ x sin θ x cos θ. N = 3GMρ L 3 = 3GMρ L 3 dv (y cos θ + z sin θ) dv (y cos θ + z sin θ) y sin θ z cos θ x sin θ x cos θ y sin θ z cos θ. N x N x = 3GMρ L 3 cos θ sin θ dv (y 2 z 2 ). z 2 a 2 + x2 + y 2 b 2 =1, (b >a) 12

dv (y 2 z 2 )=(b 2 a 2 ) 4π 15 ab2 N x = 3 5 ω L = N GmM L 3 (b 2 a 2 )cosθsin θ. ω L = 2 5 ma2 S ϕ sin θ ϕ = 3 GM b 2 a 2 2 L 3 S a 2 cos θ. ω (GMm)/L 2 = ml ω 2, (GM)/L 3 = ω2 ϕ = 3 ω 2 2 S 2π ϕ = 2 3 ( 2π ω b 2 a 2 a 2 cos θ, ) 2 S a 2 2π = 2 3 365 a 2 b 2 a 2 cos 1 θ = 2 1yr 2 a 2 3 1day b 2 a 2 cos 1 θ b 2 a 2 cos 1 θ [yr]. b/(b a) =3 1 2 2π ϕ = 2 3 365 3 12 /(2 cos θ) [yr] = 4 [yr]. 26 13