A

Similar documents
gr09.dvi


1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

TOP URL 1

2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

all.dvi

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

Part () () Γ Part ,

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2


II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0


1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l

TOP URL 1

Chap11.dvi

all.dvi

Untitled

量子力学 問題

TOP URL 1

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

TOP URL 1

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

(1) D = [0, 1] [1, 2], (2x y)dxdy = D = = (2) D = [1, 2] [2, 3], (x 2 y + y 2 )dxdy = D = = (3) D = [0, 1] [ 1, 2], 1 {

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

i 18 2H 2 + O 2 2H 2 + ( ) 3K

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

『共形場理論』

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

1 1 u m (t) u m () exp [ (cπm + (πm κ)t (5). u m (), U(x, ) f(x) m,, (4) U(x, t) Re u k () u m () [ u k () exp(πkx), u k () exp(πkx). f(x) exp[ πmxdx

Gmech08.dvi


II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

本文/目次(裏白)

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

all.dvi

pdf

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

第86回日本感染症学会総会学術集会後抄録(I)

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

: , 2.0, 3.0, 2.0, (%) ( 2.

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

( )

2011de.dvi

DVIOUT

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a

201711grade1ouyou.pdf

1 1. x 1 (1) x 2 + 2x + 5 dx d dx (x2 + 2x + 5) = 2(x + 1) x 1 x 2 + 2x + 5 = x + 1 x 2 + 2x x 2 + 2x + 5 y = x 2 + 2x + 5 dy = 2(x + 1)dx x + 1

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

05Mar2001_tune.dvi

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =

( : December 27, 2015) CONTENTS I. 1 II. 2 III. 2 IV. 3 V. 5 VI. 6 VII. 7 VIII. 9 I. 1 f(x) f (x) y = f(x) x ϕ(r) (gradient) ϕ(r) (gradϕ(r) ) ( ) ϕ(r)

2000年度『数学展望 I』講義録

i

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

JKR Point loading of an elastic half-space 2 3 Pressure applied to a circular region Boussinesq, n =

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

sec13.dvi

meiji_resume_1.PDF

note1.dvi

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2

: α α α f B - 3: Barle 4: α, β, Θ, θ α β θ Θ

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

液晶の物理1:連続体理論(弾性,粘性)

基礎数学I

chap9.dvi

n 2 + π2 6 x [10 n x] x = lim n 10 n n 10 k x 1.1. a 1, a 2,, a n, (a n ) n=1 {a n } n=1 1.2 ( ). {a n } n=1 Q ε > 0 N N m, n N a m

A


) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional

Note.tex 2008/09/19( )

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx

t θ, τ, α, β S(, 0 P sin(θ P θ S x cos(θ SP = θ P (cos(θ, sin(θ sin(θ P t tan(θ θ 0 cos(θ tan(θ = sin(θ cos(θ ( 0t tan(θ

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

( ) Loewner SLE 13 February

Transcription:

A04-164 2008 2 13

1 4 1.1.......................................... 4 1.2..................................... 4 1.3..................................... 4 1.4..................................... 5 2 6 2.1.................................... 6 2.2........................... 6 2.3........................... 7 2.4........................................ 8 2.5................................ 8 2.6.................................... 9 3 11 3.1................................. 11 3.2.............................. 13 3.3...................... 13 3.4.................................... 14 4 15 4.1 Newtonian....................................... 15 4.1.1 (Newton )................. 15 4.2 Post-Newtonian.................................... 16 4.2.1 Post-Newton............................... 16 4.2.2.................................. 17 4.2.3....................... 17 4.2.4.................................. 17 4.2.5 ()...................... 18 5 21 5.1......................................... 21 5.2..................... 21 5.3.............................. 21 6 24 6.1 1.................. 24 6.1.1 Newtonian................................... 24 6.1.2 Post-Newtonian................................ 28 6.1.3 NewtonianPost-Newtonian....... 31 6.2 2.............................. 33 2

7 37 3

1 1.1 (cosmic censorship hypothesis) 1.2 2 Post-Newton 1.3 1 0 2 0 4

1: 1 2: 2 1.4 2 3 4 5

2 [1, 2] 2.1 1905 m I d 2 r dt 2 = f (2.1) (2.1) m I (2.1) f = Gm Gm G r 2 r r (2.2) (2.2) m G (2.1) m G m I r g(r) r = r 1 2 g(r)t2 (2.3) m I d 2 r dt 2 = m d 2 r I dt m Ig(r) = (m 2 G m I )g(r) = 0 (2.4) r ( ) 2.2 6

2 x µ x µ + dx µ ds ds 2 = 3 µ=0 ν=0 3 g µν (x)dx µ dx ν (2.5) x i (i = 1, 2, 3) x 0 t x µ (µ = 0, 1, 2, 3) ds 2 4 (2.5) g µν (x) (2.5) ds 2 = g µν (x)dx µ dx ν (2.6) 1 x g µν (2.6) x g µν(x ) ds 2 = g µν(x )dx µ dx ν (2.7) 2 g µν (x)dx µ dx ν = g µν(x )dx µ dx ν (2.8) g αβ(x ) = g µν (x) xµ x α x ν x β (2.9) 2.3 : x S(x) S (x ) S(x) = S (x ) (2.10) : (2.11) A µ (x ) = xµ x α Aα (x) (2.11) 7

: (2.12) B µ (x ) = xα x µ B α (x) (2.12) : n m ( ) ( ) ( T µ 1 µ m x µ 1 x µ m x β 1 ) ( x β n ) ν 1 ν n (x ) = T α 1 α m x α β1 β 1 x αm x ν n (x) (2.13) n x ν 1 2.4 φ(x) φ(x) x µ V µ ν V µ = V µ x ν Γα µνv α (2.14) ν V µ = V µ x ν + Γµ ανv α (2.15) Γ α µν Γ α µν = 1 ( gµβ 2 gαβ x + g νβ ν x g ) µν (2.16) µ x β β T µ ν = T µ ν x β + Γµ αβt α ν Γ α νβt µ α (2.17) 2.5 α β V µ α β V µ = α ( β V µ ) + Γ µ λα( β V λ ) Γ ν βα( ν V µ ) ( α β β α )V µ (2.18) = α β V µ + α Γ µ λβv λ + Γ µ λβ α V λ + Γ µ λα( β V λ ) Γ ν βα( ν V µ ) = α β V µ + ( α Γ µ λβ + Γ µ ραγ ρ λβ)v λ + (Γ µ λβ α V λ + Γ µ λα β V λ ) Γ ν βα( ν V µ ) 8 (2.19)

α β 2 ( α β β α )V µ = ( α Γ µ λβ β Γ µ λα + Γ µ ραγ ρ λβ Γ µ ρβγ ρ λα)v λ (2.20) (2.20) R µ λαβ α Γ µ λβ β Γ µ λα + Γ µ ραγ ρ λβ Γ µ ρβγ ρ λα (2.21) R αβ R µ αµβ (2.22) R R µ µ = g αβ R µ αµβ (2.23) 2.6 g µν G µν (g αβ ) = κt µν (2.24) κ T µν (2.24) ν T µν = 0 ν G µν = 0 G µν γ R µ ναβ + α R µ νβγ + β R µ νγα = 0 (2.25) (2.25) g γν ν γ β µ γ R µγ αµ + α R µγ µγ + µ R µγ γα = 0 (2.26) 2 α R R αβµν = R βαµν (2.27) R αβµν = R αβνµ (2.28) 3 1 β (R αβ 1 ) 2 gαβ R = 0 (2.29) G µν = R µν 1 2 gµν R (2.30) 9

G µν (2.24) κ (2.24) (2.31) R µν 1 2 g µνr = 8πT µν (2.31) 10

3 [1, 2, 3] 3.1 x 0 = t, x 1 = r, x 2 = θ, x 3 = φ (3.1) ds 2 = f 1 (r)dt 2 + f 2 (r)dr 2 + f 3 (r)(dθ 2 + sin 2 θdφ 2 ) (3.2) dtdθdtdφdrdθdrdφ dtdrdtdθdtdφ r 2 = f 3 (r) r ds 2 = h 1 (r )dt 2 + h 2 (r )dr 2 + r 2 (dθ 2 + sin 2 θdφ 2 ) (3.3) h 1 (r )h 2 (r ) r 2 = f 3 (r) r r = g(r ) f 1 (r)f 2 (r) f 1 (g(r ))f 2 (g(r )) h 1 (r ) e ν(r ) h 2 (r ) e λ(r ) ν(r )λ(r ) ds 2 = e ν(r) dt 2 + e λ(r) dr 2 + r 2 (dθ 2 + sin 2 θdφ 2 ) (3.4) r r (3.4) 0 Γ 0 01 = Γ 0 10 = 1 2 ν, Γ 1 00 = 1 2 eν λ ν Γ 1 11 = 1 2 λ, Γ 1 22 = re λ, Γ 1 33 = e λ r sin 2 θ Γ 2 12 = Γ 2 21 = 1 r, Γ 3 13 = Γ 3 31 = 1 r, Γ2 33 = sin θ cos θ Γ3 23 = Γ 3 32 = cot θ r ( ) ν R 00 = e ν λ 2 + (ν ) 2 ν λ 4 4 + ν (3.6) r R 11 = ν 2 (ν ) 2 + ν λ 4 4 + λ (3.7) ( r ) λ R 22 = 1 e λ + re λ 2 ν (3.8) 2 R 33 = R 22 sin 2 θ (3.9) (3.5) 11

(2.31) g µν R νµ 1 2 gµν g νµ R = 8πg µν T νµ (3.10) R = 8πT (3.11) (3.11) (2.31) R µν = 8π ( T µν 1 ) 2 T g µν (3.12) R µν = 0 (3.6)(3.7) ν + λ = 0 ν + λ = 0 (3.13) (3.4) r 0 (3.13) (3.8) ν 1 + d dr (re λ ) = 0 e λ = 1 C r (3.14) ds 2 = ( 1 C ) ( dt 2 + 1 C ) 1 dr 2 + r 2 (dθ 2 + sin 2 θdφ 2 ) (3.15) r r (3.15) C m M g 00 (3.17) (3.16) φ(r) = M r (3.16) g 00 = 1 2φ (3.17) g 00 = 1 + 2M r (3.18) (3.15) g 00 = (1 C/r) r (3.18) C = 2M ( ds 2 = 1 2M ) ( dt 2 + 1 2M ) 1 dr 2 + r 2 (dθ 2 + sin 2 θdφ 2 ) (3.19) r r (3.19) r 2M r = 0 r r = 2M r r < 2M g tt > 0g rr < 0 r = 2M ( r s ) 12

3.2 r s λ dθ dλ = dφ dλ = 0 (3.20) (3.19) (6) dt ( dr = ± 1 r ) 1 s (r > r s ) (3.21) r t = r + r s ln r r s + constant (3.22) t = (r + r s ln r r s + constant) (3.23) (6) r = r 2 (> r s ) r = r 1 (< r 2 ) r1 ( t = 1 r ) 1 r2 ( s dr = 1 + r ) s/r dr r 2 r r 1 1 r s /r = r 2 r 1 + r s ln r 2 r s r 1 r s (3.24) (3.24) r 2 r s r s r 2 r = r s 3.3 (event horizon) 3.3 (3.19) r = r s (trθφ) t t t = t + r s ln(r r s ) (3.25) ( trθφ) (3.25) (3.23) d t dr t = r + constant (3.26) = 1 (3.27) 45 (3.25) d t = dt + 13 r s r r s dr (3.28)

(3.19) ( ds 2 = 1 2M ) d t 2 + 4M ( r r d tdr + 1 + 2M ) dr 2 + r 2 (dθ 2 + sin 2 θdφ 2 ) (3.29) r (3.29) r = r s 3.4 r = r s r = 0 R µνλσ R µνλσ = 48M 2 r 6 (3.30) r = 0 1969 1992 ( [4]) 14

4 ( c G 1 ) Einstein Newton Newtonian Newton ( NewtonianPost-Newtonian ) 4.1 Newtonian 4.1.1 (Newton ) F Mm r F = G Mm r 2 r r (4.1) r d 2 x i dt 2 = N j i,1 j N m j (x j x i ) (x j x i ) 3 (4.2) N x j m j (4.2) (4.2) dx i dt dv i dt = v i (4.3) = N j i,1 j N m j (x j x i ) (x j x i ) 3 (4.4) G = c = 1L = 1.5 10 11 [m] = 1AU M = L c2 G 2.0 1038 [kg] (4.5) T = L c 0.5 103 [s] (4.6) 15

2.0 10 30 [kg] 1 31536000[s] 1 (4.5)(4.6) (2.0 10 30 [kg])/(2.0 10 38 [kg]) = 1.0 10 8 (4.7) (31536000[s])/(0.5 10 3 [s]) = 63072 (4.8) x = 1.0y = 0z = 0 t = 63072 3 ( 1) 3: (Newtonian) 1 1 p = N m i v i (4.9) i=1 N i=1 (%) = m iv i N i=1 m 100 (4.10) i v i 4.2 Post-Newtonian 4.2.1 Post-Newton Post-Newton v c ε (v/c) 2 1 1 g 00 = 1 + 2U (4.11) g ij = δ ij (i, j = 1, 2, 3) (4.12) 16

2 g 00 = 1 + 2U 2U 2 (4.13) g ij = (1 + 2U)δ ij (4.14) U = φ φ (3.16) 4.2.2 (t, x, y, z) 3 50 3 x y z x min x max 4.2.3 φ(x, y, z) = N i=1 M i (x xi ) 2 + (y y i ) 2 + (z z i ) 2 (4.15) x i y i z i M i N (4.13)(4.14) g µν 4.2.4 txyz xyz x f(x, y, z) = f(x + x, y, z) f(x x, y, z) 2 x (4.16) x f(x min, y, z) = 2 x f(x min + x, y, z) x f(x min + 2 x, y, z) (4.17) x f(x max, y, z) = 2 x f(x max x, y, z) x f(x max 2 x, y, z) (4.18) 17

t = 0 0 t = t f(t) f(t t) t f(t) = (4.19) t t = 2 t 2 t f(t) = 3f(t) 4f(t t) + f(t 2 t) 2 t (4.20) 4.2.5 () d 2 x α dτ + dx µ dx ν 2 Γα µν dτ dτ = 0 (4.21) 8 (x p, y p, z p ) (x p, y p, z p ) 8 8 (x n, y n, z n )(x n + x, y n + y, z n + z) z 4 4 abcd a = x p x n (4.22) b = x a (4.23) c = y p y n (4.24) d = y c (4.25) Γ(x p, y p, z n ) ( Γ(x p, y p, z n ) = Γ(x, y, z n ) b x + Γ(x n + x, y n, z n ) a x + ) d y ( Γ(x n, y n + y, z n ) b x + Γ(x n + x, y n + y, z n ) a x ) c y (4.26) Γ(x p, y p, z n + z) ( Γ(x p, y p, z n + z) = Γ(x n, y n, z n + z) b x + Γ(x n + x, y n, z n + z) a ) d x y ( + Γ(x n, y n + y, z n + z) b x + Γ(x n + x, y n + y, z n + z) a ) c x y (4.27) 18

(4.26) (4.27) Γ(x p, y p, z p ) Γ(x p, y p, z p ) = Γ(x p, y p, z n ) z n + z z p z + Γ(x p, y p, z n + z) z p z n z (4.28) Γ(xn, y n+ y, zn) Γ(xn+ a, y n+ y, zn) Γ(xn+ x, y n+ y, zn) d (xp, y p, zn) c a b Γ(xn, y n, zn) Γ(xn+ a, y n, zn) Γ(xn+ x, y n, zn) 4: (z ) (4.21) 4 (4.21) dx α dt du α dt = u α (4.29) = Γ α µνu µ u ν (4.30) xyz u 1 u 2 u 3 xyz u 0 (4.31) u µ u µ = 1 (4.31) g 00 u 0 u 0 + g 11 u 1 u 1 + g 22 u 2 u 2 + g 33 u 3 u 3 = 1 (4.32) u 0 u 0 = 1 g 11 u 1 u 1 g 22 u 2 u 2 g 33 u 3 u 3 g 00 (4.33) Newtonian 5 ( 1) 19

5: (Post-Newtonian) 1 1 20

5 5.1 (event horizon) 3 (apparent horizon) 2 2 5.2 2 M v = 2M r (5.1) r (5.1) v v c 5.3 ds 2 = 0 τ λ d 2 x α dλ + dx µ dx ν 2 Γα µν dλ dλ = 0 (5.2) 21

(3.29) dθ = dφ = 0 (3.29) ( 1 2m r ) d t 2 + 4m ( r d tdr + 1 + 2m r ) dr 2 = 0 (5.3) (5.3) dλ 2 ( 1 2m r ) d t 2 dλ 2 + 4m r d t dr dλ dλ + ( 1 + 2m r ) dr 2 dλ 2 = 0 (5.4) d t dλ = u0 = 1 (5.4) dr dλ = u1 2 u 1 m = 1 6 6: 6 r = 2 r = 2 backward photon method( [5]) backward photon method backward photon method d t dλ = u0 = 1 7 22

7: backward photon method 7 forward time 6 backward photon method 23

6 6.1 1 t = 0 1 r = 1 2500 0 1 M = 0.00006 r = 2M r = 0.3 1 free-fall time free-fall time 0 t ff t ff = 3π 32Gρ (6.1) t ff 6.1.1 Newtonian 9 8 9 8 ( ρ 0 t = 0 ) 8: ( r = 0.06) 24

図 9: ニュートンの運動方程式を用いて時間発展したときの粒子のスナップショット (粒子分布を xy 座標に射影したもの) 25

10 t = 1.05t ff r = 0.2 r = 0.2 t ff 10: t = 1.05t ff 11 11: Newtonian 26

12 t = 1.05t ff r > 0.3 12: t = 1.05t ff ( r = 0.06) 27

6.1.2 Post-Newtonian 15 13 (x n, 0, 0) g xx 13 t = 1.05t ff t = 1.29t ff t = 1.29t ff 13: g xx t = 1.29t ff r = 0.3 ( 14) 14: t = 1.29t ff 28

図 15: 測地線方程式を用いて時間発展したときの粒子のスナップショット (粒子分布を xy 座標に射影したもの) 29

r = 0.3 t = 1.29t ff 16 backward photon method x = 0 backward photon method x = 1 x 16: 16 r = 0.3 backward photon method Post-Newton 17 t = 1.29t ff r > 0.3 18 t ff 30% Post-Newton Post-Newton 17: t = 1.29t ff ( r = 0.06) 18: 1 30

6.1.3 NewtonianPost-Newtonian 19 20 NewtonianPost-Newtonian 20 r = 0.3 Newtonian Post-Newtonian Post-Newtonian r = 0.1 20 Newtonian r = 0.3 Post-Newtonian r = 0.1 Newtonian 14 Post-Newtonian u 0 u 0 u 0 dt dτ dt u0 dτ 19: r 0.3 20: r 0.1 31

Post-Newtonian Post-Newton 21 21 x = 0.06 x = 0.125 v x v y v z ( (4.10)) 21: 21 free-fall time free-fall time Post-Newton Post-Newton 32

6.2 モデル 2 ドーナツ型分布 モデル 2 では図 2 のように粒子 2500 個をドーナツ型に分布させたものを時間発展させた 現 在 5 次元時空でのブラックリング解の存在が知られており 将来的にこのブラックリングの 性質を研究するために モデル 2 ではドーナツ型に分布した粒子を考えた このシミュレーションは 測地線方程式を用いたプログラムで時間発展を行い モデル 1 と 同様にブラックホール形成の判定を行う 粒子の質量はモデル 1 と同じ M = 0.00006 とし 粒 子の初速度は 0 とした まず始めに 総質量をドーナツ型の体積で割った密度を式 (6.1) に代入 し その free-fall time を tf f 0 とする 結果として 図 22 の粒子のスナップショットと 図 23 の座標 (xn, 0, 0) での計量 gxx を示す 図 22: ドーナツ型分布を時間発展したときの粒子のスナップショット (線状に崩壊するまで) 33

23: g xx () 22 t ff0 23 g xx 1 free-fall time t ff1 2 free-fall time t ff = t ff0 + t ff1 25 24 (x n, 0, 0) g xx 24: g xx () 34

図 25: ドーナツ型分布を時間発展したときの粒子のスナップショット (一点に崩壊するまで) 図 25 のスナップショットと 図 24 の計量 gxx のグラフからもわかるように 時刻 tf f 付近で原 点に粒子が集中していることがわかる また 図 26 は時刻 t = 1.06tf f での脱出速度を示して いるが r = 0.3 付近で脱出速度の値が大きくなっている 尚 モデル 2 の時間発展で 脱出速 度によるブラックホール形成の判定を行ったが 脱出速度が光速を超えることはなかった 図 26: t = 1.06tf f での脱出速度 35

27: 28: 27 2 t ff 30% 1 28 t ff t ff 0 t ff Post-Newton 36

7 2 Post-Newton 1 Post-Newton Post-Newton Post-Newton Post-Newton Post-Newton [1] (1996) [2] (2005) [3] Ray d InvernoIntroducing Einstein s RelativityClarendon Press(1992) [4] S. L. Shapiro and S. A. Teukolsky, Phys. Rev. Lett. 66, 994(1991) [5] Peter Anninos et al, Phys. Rev. Lett. 74, 630(1995) 37