Oxidation Characteristics of Carbon Materials Hideaki Sane and Yasuo Uchiyama Corresponding Author, Nagasaki Universi

Similar documents

Rate of Oxidation of Liquid Iron by Pure Oxygen Shiro BAN-YA and Jae-Dong SHIM Synopsis: The rate of oxidation of liquid iron by oxygen gas has been s

Evaluation of Anisotropy and Preferred Orientation of Carbon and Graphite Materials Yoshihiro Hishiyama Fig.1 Diffraction condition in Fourier space.

9) H. SCHMCLZRIED: Z. Elektrochem. 66 (l%1) p ) W. D. KINGERY et al.: J. Am. Chem. Soc., 42 (1959), p ) F. HUND: Z. Phys. Chem., 199 (195

<Measurements of Isobaric Boiling Point Curves at High and Low Pressures> Received on July 12, 1968 ** Kazuo Kojima (Dept. Eng. Chem., Nihon Univ., To

Caloric Behavior of Chemical Oscillation Reactions Shuko Fujieda (Received December 16, 1996) Chemical oscillation behavior of Belousov- Zhabotinskii

Natural Convection Heat Transfer in a Horizontal Porous Enclosure with High Porosity Yasuaki SHIINA*4, Kota ISHIKAWA and Makoto HISHIDA Nuclear Applie


The Plasma Boundary of Magnetic Fusion Devices

Fig. 2 Signal plane divided into cell of DWT Fig. 1 Schematic diagram for the monitoring system

The Phase Behavior of Monooleoylglycerol-Water Systems Mivoshi Oil & Fat Co.. Ltd. Faculty of Science and Technology, Science University of Tokyo Inst

( ) 2. ( ) 1. 1, kg CO2 1 2,000 kg 1 CO2 19 % 2,000 2, CO2 (NEDO) (COURSE50) 2008 COURSE50 CO2 CO2 10 % 20 %

J. Jpn. Inst. Light Met. 65(6): (2015)

unknown heat Q known heat Q0 (a) (b) Fig. 3 Schematic drawing of output potential difference vs. time curves from a conduction-type calorimeter. Fig.

Application of Solid Electrolyte Sensors to Hot Corrosion Studies Nobuo Otsuka* *Iron & Steel Research Laboratories, Sumitomo Metal Industries, Ltd. C


渡辺(2309)_渡辺(2309)

Fig. 1 Flow diagram of experimental apparatus employed Fig. 2 Porosity change during sulfurization of reduced sample pellets

X線分析の進歩36 別刷

Surface Morphology for Poly-L-lactide Fibers Subjected to Hydrolysis Suong-Hyu Hyon Institute for Frontier Medical Sciences, Kyoto University 53, Shog

Reaction Mechanism and Liquefaction Process of Coal Yosuke MAEKAWA

1.7 D D 2 100m 10 9 ev f(x) xf(x) = c(s)x (s 1) (x + 1) (s 4.5) (1) s age parameter x f(x) ev 10 9 ev 2

Fundamental Study on the SOX Gas Sensor Utilizing Beta-Alumina with Sputtered Praseodymium Oxide Thin Films by Shinya YAO1*, Kenji MIYAGAWA1, Shigeru

Fig. 1. Schematic drawing of testing system. 71 ( 1 )

微粒子合成化学・講義

Fig. ph Si-O-Na H O Si- Na OH Si-O-Si OH Si-O Si-OH Si-O-Si Si-O Si-O Si-OH Si-OH Si-O-Si H O 6

プラズマ核融合学会誌11月【81‐11】/小特集5

J. Jpn. Soc. Soil Phys. No. 126, p (2014) ECH 2 O 1 2 Calibration of the capacitance type of ECH 2 O soil moisture sensors Shoichi MITSUISHI 1 a

Netsu Sokutei 17 (1) Control and Measurement of Oxygen Partial Pressure, and Thermodynamic Properties Toshihide Tsuji The oxygen partial pressur

Table 1 Properties of parent coals used Ebenezer, Massel Buluck ; Australia, Datong; China Table 2 Properties of Various chars CY char: Captured char


** Department of Materials Science and Engineering, University of California, Los Angeles, CA 90025, USA) Preparation of Magnetopulmbite Type Ferrite

Optical Lenses CCD Camera Laser Sheet Wind Turbine with med Diffuser Pitot Tube PC Fig.1 Experimental facility. Transparent Diffuser Double Pulsed Nd:

1) K. J. Laidler, "Reaction Kinetics", Vol. II, Pergamon Press, New York (1963) Chap. 1 ; P. G. Ashmore, "Catalysis and Inhibition of Chemical Reactio

(2009) Table 1 van Genuchten θ r θ s α n K s h i θ(h i ) K(h i ) Soil type (cm 3 cm 3 ) (cm 3 cm 3 ) (cm 1 ) ( ) (cm d 1 ) (cm) (cm 3 cm 3 ) (c

: u i = (2) x i Smagorinsky τ ij τ [3] ij u i u j u i u j = 2ν SGS S ij, (3) ν SGS = (C s ) 2 S (4) x i a u i ρ p P T u ν τ ij S c ν SGS S csgs

HAJIMENI_56803.pdf

Stress Singularity Analysis at an Interfacial Corner Between Anisotropic Bimaterials Under Thermal Stress Yoshiaki NOMURA, Toru IKEDA*4 and Noriyuki M

STSNJ NL


Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels).

248 Nippon Shokuhin Kagaku Kogaku Kaishi Vol. /-, No./,,.2,/. (,**0) 12 * * * Microencapsulation of Glutamine with Zein by a Solvent Evaporation Metho

Fig.1 A location map for the continental ultradeep scientific drilling operations.

Study on Application of the cos a Method to Neutron Stress Measurement Toshihiko SASAKI*3 and Yukio HIROSE Department of Materials Science and Enginee

Table 1. Shape and smelting properties of chrome ores as delivered. Table 2. Chemical composition of chrome ores (%). Table 3. Chemical composition of

★索引.indb

Table 1. Assumed performance of a water electrol ysis plant. Fig. 1. Structure of a proposed power generation system utilizing waste heat from factori

<32322D8EA D89CD8D8797B294C E8A968388DF814589C193A1899B E5290EC8F438EA12D966B8A4393B98F5C8F9F926E95FB82CC8BC7926E F5

JAPAN MARKETING JOURNAL 111 Vol.28 No.32008

JAPAN MARKETING JOURNAL 113 Vol.29 No.12009

JAPAN MARKETING JOURNAL 110 Vol.28 No.22008


Quantitative Relationship between SAR and Temperature Rise inside Eyeball in a Realistic Human Head Model for 1.5 GHz-Microwave Exposure Kiyofumi Taka

1) T. L. Cottrel, A. J. Matheson, Trans. Farad. Soc., 58, 2336(1962). 2) E. N. Chesnokov, V. N. Panfilov, Teor. Eksp. Khimiya, 17, 699(1981). 3) M. Ko

JAMSTEC Rep. Res. Dev., Volume 12, March 2011, 27 _ 35 1,2* Pb 210 Pb 214 Pb MCA 210 Pb MCA MCA 210 Pb 214 Pb * 2

陽電子科学 第4号 (2015) 3-8

2). 3) 4) 1.2 NICTNICT DCRA Dihedral Corner Reflector micro-arraysdcra DCRA DCRA DCRA 3D DCRA PC USB PC PC ON / OFF Velleman K8055 K8055 K8055

Viscosity of Ternary CaO-SiO2-Mx (F, O)y and CaO-Al2O3-Fe2O3 Melts Toshikazu YASUKOUCHI, Kunihiko NAKASHIMA and Katsumi MORI Synopsis : Effects of add

Structural Studies of Graphite Intercalation Compounds of Fluorine by Transmission Electron Microscopy Tetsuya Isshiki, Fujio Okino, Yoshiyuki Hattori

SICE東北支部研究集会資料(2017年)

870727_ガイドブック2016_vol1.indd

Table 2 DENSO Port Injection Fuel Injectors Fig.1 Port Fuel Injection System and Module 1996 CO ポート噴射システム 1 ( 1) HC 2 UC [2] (

Mikio Yamamoto: Dynamical Measurement of the E-effect in Iron-Cobalt Alloys. The AE-effect (change in Young's modulus of elasticity with magnetization

Note; a: Pressure sensor, b: Semi-permeable membrane, c: O-ring, d: Support screen, e: Solution, f: Solvent. Fig. 2. Osmometer cell. Fig. 1. Schematic

06_学術_技師の現状および将来需要_武藤様1c.indd

Fig. 1. Horizontal displacement of the second and third order triangulation points accompanied with the Tottori Earthquake of (after SATO, 1973)

Vol

untitled

Fig. 1. Diagram illustrating the method of electrical stimulation for collecting the semen of drake. Table 1. Relationships between the dilution rate

Estimation of Photovoltaic Module Temperature Rise Motonobu Yukawa, Member, Masahisa Asaoka, Non-member (Mitsubishi Electric Corp.) Keigi Takahara, Me

& Vol.5 No (Oct. 2015) TV 1,2,a) , Augmented TV TV AR Augmented Reality 3DCG TV Estimation of TV Screen Position and Ro

1

(a) -4furne.ce Fig. I Schematic drawing of cooling chamber Fig. 2 Priventive gas velocity at nozzle 405

CuおよびCu‐Sn系化合物のSn‐Pbはんだ濡れ性解析

untitled

The Eevaluation One Bottle Type Silane Coupling Agents Masahiro Aida, Hideo Kanaya, Taira Kobayashi, Keiji Utsugizaki, Yoshizumi Murata, Tohru Hayakaw

技術研究所 研究所報 No.80

Netsu Sokutei 19 (4) Thermal Transitions and Stability of Fatty Acid-Containing and Defatted Bovine Serum Albumin (BSA) Michiko Kodama, Shinji

SAXS Table 1 DSC POM SAXSSAXS PF BL-10C BL-15A Fig. 2 LC12 DSC SAXS 138 C T iso T iso SAXS q=1.4 nm -1 q=(4π/λ)sin(θ/2), λ:, θ: Fig. 3 LC12 T iso Figu

食品工学.indb

論文

perature was about 2.5 Ž higher than that of the control irrespective of wind speed. With increasing wind speeds of more than 1m/s, the leaf temperatu

teionkogaku43_527

プラズマ・核融合学会

320 Nippon Shokuhin Kagaku Kogaku Kaishi Vol. /., No.1, -,* -,/ (,**1) 8 * ** *** * ** *** E#ect of Superheated Steam Treatment on the Preservation an

9 Nippon Shokuhin Kagaku Kogaku Kaishi Vol. /,, No.0,,/+,/0 (,**/) 251 * * E#ects of Microbial Transglutaminase on Melting Point and Gel property of G


„´™Ÿ/’£flö

無電解めっきとレーザー照射による有機樹脂板上へのCuマイクロパターン形成

Degradation Mechanism of Ethylene-propylene-diene Terpolymer by Ozone in Aqueous Solution Satoshi MIWA 1 *, 2, Takako KIKUCHI 1, 2, Yoshito OHTAKE 1 a

Temperature Rise in a Birefringent Substrate by RF Discharge Plasma Koichi Takaki, Member, Kunioh Sayama, Student Member, Atsushi Takahashi, Student M

Chemical Fractionation and Leachability of Boron in Waste Samples Jun YOSHINAGA 1), Taka-aki MATSUWAKI2), Yoichi HASEGAWA 1), Yukio YANAGISAWA 1), Aki

20 12,, 59 q r Fig.2 [3] Fig.3 1cm Fig.2 Schematic of experimental apparatus for measuring interfacial thermal resistance. Fig.3 Surface morphol

プラズマ核融合学会誌6月【91-6】/プロジェクトレビュー

weak ferromagnetism observed on Shimotokuyama and Ayumikotan natural crystals behaves as pre dicted by Dzyaloshinsky and Moriya, while Wagasennin and

Accuracy check of grading of XCT Report Accuracy check of grading and calibration of CT value on the micro-focus XCT system Tetsuro Hirono Masahiro Ni

04-“²†XŒØ‘�“_-6.01

資源と素材


1 Web [2] Web [3] [4] [5], [6] [7] [8] S.W. [9] 3. MeetingShelf Web MeetingShelf MeetingShelf (1) (2) (3) (4) (5) Web MeetingShelf

Transcription:

Oxidation Characteristics of Carbon Materials Hideaki Sane and Yasuo Uchiyama Corresponding Author, E-mail:sano@net.nagasaki-u.ac.jp Nagasaki University: 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan

Table 1 Standard free energy of C-O system gaseous species.

(a) y axis: normal (b) y axis : logarithmic Fig. 1 Equilibrium amount of species of C-O system with temperature calculated by ChemSage8). Calculating condition; Pressure: 1atm, Volume: variable displacement, initial species; C: 1mol, O2(g): 0.1mol. Fig. 2 Ellingham diagram of C, B4C and SiC.

a) Apparatus for oxidation Fig. 3 Schematic diagram of (a) apparatus for oxidation furnace and (b) sample holder. Fig. 4 Morphological change of C/B4C/SiC composite after oxidation at 1200 Ž for 1, 2 and 5h in dry air.

a) TGA apparatus b) TG-DTA apparatus Fig. 5 Schematic diagram of (a) TGA apparatus and (b) TG DTA apparatus.

Fig. 6 TG-DTA curve of 2150 Ž heat-treated petroleum coke. Fig. 7 DTA curves for carbonized furfural-resin heat-treated at different temperatures20).

(c): Reaction rate (V3) vs oxidation burn-off (a): mass% vs oxidation time (b): Reaction rate (V2) vs oxidation burn-off Fig. 8 TG curve and oxidation rate V2 and V3 of carbonized saran char with and without 1.0mass%-boron loaded at 800t in dry air24).

1) H. Imai, TANSO 1981 [No.107] 162-171 [in Japanese]. 4) M. W. Chase, J. L. Curnutt, H. H. Prohet, A. N. Syverud and L. C. Walker, J. Phys. Chem. Ref Data 3 [No.2] (1974) 311-480. 5) D. D. Wagman, W. H. Evans, V. B. Parker, R. H. Schumm, I. Halow, S. M. Bailey, K. L. Churney and R. L. Nuttall, J. Phys. Chem. Ref. Data 11 [No.2] Suppl. 2 (1982). 7) M. Hillert, B. Jansson, B. Sundman and J. Agren, Met. Trans. A 16A [No.2] (1985) 261-266. 8) G. Eriksson and K. Hack, Met. Trans. B 21B [No.12] (1990) 1013-1023. 9) H. Sano, H. M. Cheng, Y. Uchiyama and K. Kobayashi, J. Ceram. Soc. Japan 102 [No.10](1994) 925-929 [injapanese]. 10) Y. Watanabe, T. Matsuzaki, H. Itagaki, K. Yudate, T. Takiguchi, Y. Shouda and S. Hasegawa, Journal of the Japan Society for Aeronautical and Space Sciences 42 [No.482] (1994) 141-149 [in Japanese]. 12) J. Okada and T. Ikegawa, J. Appl. Phys. 24 (1953) 1249-1250. 14) H. Kawakami, TANSO 1986 [No.124] 26-33 [in Japanese]. 15) H. Hatori, TANSO 2000 [No.195] 441-445 [in Japanese]. 16) T. Ozawa, J. Thermal Anal. Calori. 59 (2000) 373-384. 19) H. E. Kissinger, Journal of the National Bureau of Standards 57 [No.4] (1956) 217-221. 20) T. Honda, T. Saito and Y. Horiguchi, TANSO 1973 [No.72] 14-20 [in Japanese]. 21) G. L. Montet and G. E. Myers, Carbon 6 [No.5] (1968) 627-636. 22) H. Imai. et al.. JAERI-M 9153 (1980). 24) Y. Uchiyama, L. R. Radovic and C. G. Pntano, International Symposium of Carbon, Science and Technology for New Carbons, Tokyo, 1998.11.8-12, 012-01. 25) M. R. Everett, D. V. Kinsey and E. Romberg, Chemistry and Physics of Carbon, (Philip L. Walker, Jr., ed. ) Vol.3 (1968) pp.289-436, Marcel Dekker, New York. 26) E. E. G. Hughes and J. M. Thomas, Nature 193 (1962) 838-840. 27) J. M. Thomas and E. E. Hughes, Carbon 1 [No.2] (1964) 209-214. 28) R. T. K. Baker and P. S. Harris, J. Phys. E 5 (1972) 793-797. 29) R. T. K. Baker and P. S. Harris, Carbon 11 [No.1] (1973) 25-31. 30) A. A. Gewirth and A. J. Bard, J. Phys. Chem. 92 [No.20] (1988) 5563-5566. 31) A. Miyazaki, M. Okamoto and I. Tomizuka, Journal of the Materials Science Society of Japan 31 [No.2] (1994) 81-87 [in Japanese]. 32) H. Sano, E. Hayakawa, J. Eshima, Y. Uchiyama and K. Kobayashi, TANSO 1996 [No.175]257-265 [in Japanese]. 33) N. R. Laine, F. J. Vastola and P. L. Walker, Jr., J. Phys. Chem. 58 [No.20] (1963) 2030-2034. 34) J. N. Ong, Jr., Carbon 2 [No.3] (1964) 281-297. 35) A. C. Collins, H. G. Masterson and P. P. Jennings, J. Nucl. Mater. 15 [No.2] (1965) 135-136. 36) J. L. Wood, R. C. Bradt and P. L. Walker, Jr., Carbon 18 [No.3] (1980) 179-189.