96 7 1m =2 10 7 N 1A 7.1 7.2 a C (1) I (2) A C I A A a A a A A a C C C 7.2: C A C A = = µ 0 2π (1) A C 7.2 AC C A 3 3 µ0 I 2 = 2πa. (2) A C C 7.2 A A



Similar documents
応力とひずみ.ppt

i I

1

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

B line of mgnetic induction AB MN ds df (7.1) (7.3) (8.1) df = µ 0 ds, df = ds B = B ds 2π A B P P O s s Q PQ R QP AB θ 0 <θ<π

(w) F (3) (4) (5)??? p8 p1w Aさんの 背 中 が 壁 を 押 す 力 垂 直 抗 力 重 力 静 止 摩 擦 力 p8 p



73

.....Z...^.[ \..

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

A

genron-3

IA01-154_ACL5...._1.indd

IA00-829A.C.L...._web.indd

III No (i) (ii) (iii) (iv) (v) (vi) x 2 3xy + 2 lim. (x,y) (1,0) x 2 + y 2 lim (x,y) (0,0) lim (x,y) (0,0) lim (x,y) (0,0) 5x 2 y x 2 + y 2. xy x2 + y

1 180m g 10m/s v 0 (t=0) z max t max t z = z max 1 2 g(t t max) 2 (6) r = (x, y, z) e x, e y, e z r = xe x + ye y + ze z. (7) v =

d dt P = d ( ) dv G M vg = F M = F (4.1) dt dt M v G P = M v G F (4.1) d dt H G = M G (4.2) H G M G Z K O I z R R O J x k i O P r! j Y y O -

i

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2


50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

7-12.dvi

表紙

40 6 y mx x, y 0, 0 x 0. x,y 0,0 y x + y x 0 mx x + mx m + m m 7 sin y x, x x sin y x x. x sin y x,y 0,0 x 0. 8 x r cos θ y r sin θ x, y 0, 0, r 0. x,

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2

k m m d2 x i dt 2 = f i = kx i (i = 1, 2, 3 or x, y, z) f i σ ij x i e ij = 2.1 Hooke s law and elastic constants (a) x i (2.1) k m σ A σ σ σ σ f i x

剛塑性FEM入門.ppt

ii

( a 3 = 3 = 3 a a > 0(a a a a < 0(a a a



1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)


( ) LAN LAN tex ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1

Maxwell ( H ds = C S rot H = j + D j + D ) ds (13.5) (13.6) Maxwell Ampère-Maxwell (3) Gauss S B 0 B ds = 0 (13.7) S div B = 0 (13.8) (4) Farad

合併後の交付税について

II 2 II

1.1 1 A

Microsoft Word - 計算力学2007有限要素法.doc

ac b 0 r = r a 0 b 0 y 0 cy 0 ac b 0 f(, y) = a + by + cy ac b = 0 1 ac b = 0 z = f(, y) f(, y) 1 a, b, c 0 a 0 f(, y) = a ( ( + b ) ) a y ac b + a y

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

1.1 ft t 2 ft = t 2 ft+ t = t+ t d t 2 t + t 2 t 2 = lim t 0 t = lim t 0 = lim t 0 t 2 + 2t t + t 2 t 2 t + t 2 t 2t t + t 2 t 2t + t = lim t 0

24.15章.微分方程式


Gmech08.dvi

A B 5 C mm, 89 mm 7/89 = 3.4. π 3 6 π 6 6 = 6 π > 6, π > 3 : π > 3

Gmech08.dvi

( ) x y f(x, y) = ax

i

1 1 3 ABCD ABD AC BD E E BD 1 : 2 (1) AB = AD =, AB AD = (2) AE = AB + (3) A F AD AE 2 = AF = AB + AD AF AE = t AC = t AE AC FC = t = (4) ABD ABCD 1 1

all.dvi

座標変換におけるテンソル成分の変換行列

[ ] Table

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

29

取扱説明書 [F-02F]

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

スライド 1

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

Quz Quz

振動と波動

sec13.dvi

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )


l µ l µ l 0 (1, x r, y r, z r ) 1 r (1, x r, y r, z r ) l µ g µν η µν 2ml µ l ν 1 2m r 2mx r 2 2my r 2 2mz r 2 2mx r 2 1 2mx2 2mxy 2mxz 2my r 2mz 2 r

Gmech08.dvi

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

δ ij δ ij ˆx ˆx ŷ ŷ ẑ ẑ 0, ˆx ŷ ŷ ˆx ẑ, ŷ ẑ ẑ ŷ ẑ, ẑ ˆx ˆx ẑ ŷ, a b a x ˆx + a y ŷ + a z ẑ b x ˆx + b

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

PSCHG000.PS

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

2012専門分科会_new_4.pptx

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)


II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,,

E F = q b E (2) E q a r q a q b N/C q a (electric flux line) q a E r r r E 4πr 2 E 4πr 2 = k q a r 2 4πr2 = 4πkq a (3) 4πkq a πk 1 ɛ 0 ɛ 0 (perm

Note.tex 2008/09/19( )

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

sin.eps


4‐E ) キュリー温度を利用した消磁:熱消磁

( ) ( )

1 n =3, 2 n 3 x n + y n = z n x, y, z 3 a, b b = aq q a b a b b a b a a b a, b a 0 b 0 a, b 2

i 18 2H 2 + O 2 2H 2 + ( ) 3K

C:/KENAR/0p1.dvi

f (x) f (x) f (x) f (x) f (x) 2 f (x) f (x) f (x) f (x) 2 n f (x) n f (n) (x) dn f f (x) dx n dn dx n D n f (x) n C n C f (x) x = a 1 f (x) x = a x >

CALCULUS II (Hiroshi SUZUKI ) f(x, y) A(a, b) 1. P (x, y) A(a, b) A(a, b) f(x, y) c f(x, y) A(a, b) c f(x, y) c f(x, y) c (x a, y b)

A

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta


液晶の物理1:連続体理論(弾性,粘性)

高等学校学習指導要領

Transcription:

7 Lorentz 7.1 Ampère I 1 I 2 I 2 I 1 L I 1 I 2 21 12 L r 21 = 12 = µ 0 2π I 1 I 2 r L. (7.1) 7.1 µ 0 =4π 10 7 N A 2 (7.2) magnetic permiability I 1 I 2 I 1 I 2 12 21 12 21 7.1: 1m 95

96 7 1m =2 10 7 N 1A 7.1 7.2 a C (1) I (2) A C I A A a A a A A a C C C 7.2: C A C A = = µ 0 2π (1) A C 7.2 AC C A 3 3 µ0 I 2 = 2πa. (2) A C C 7.2 A A = µ 0 I2 2πa. I 2 a.

7.2 97 7.2 (7.1) I 1 I 2 r Coulomb Coulomb q 1 q 2 q 2 E 2 q 1 I 2 I 1 magnetic field Coulomb I ds d d = I ds (7.3) leming leming s left-hand rule d Ids 7.3: E I I ds d (7.1) I d = I ds

98 7 7.1 d I ds xx xy xz = yx yy yz zx zy zz d x d y = xx xy xz yx yy yz I ds x I ds y d z zx zy zz I ds z ij (7.1) I ds d z z = 0 0 0 0 0 0 0 d I ds d x = I ds y, d y = I ds x, d z =0 z =(0, 0, ) I ds y z I ds z y d = I ds = I ds z x I ds x z I ds x y I ds y x z z

7.3 Lorentz 99 7.3 Lorentz q v m = q v (7.4) Lorentz Lorentz s force Lorentz v =0 Lorentz (7.3) S n v 7.4 I I = n ( e) Sv (7.3) I ds d = nes ds v v ds ns ds ds = e v ds I e v S 7.4: Lorentz q (7.4) E e = qe Lorentz = q ( E + v ). (7.5)

100 7 Lorentz Lorentz (7.5) v K v Lorentz (7.5) E v K q K u K Lorentz (7.5) = q ( E + v ) v K E K Lorentz E E E p = E p, E t = p = p, t = 1 1 (u/c) 2 ( E + u ) t 1 1 (u/c) 2 ( 1 c 2 u E ) t (7.6) p u t u 7.2 v 0 q m q r v 7.5: Lorentz = q v v 7.5 r

7.3 Lorentz 101 m dv dt =0, m v2 r = qv v = v 0 = r = mv 0 q = r = mv 0 /(q) v 0 cyclotron motion ω c = v r = q m cyclotron frequency q/m 7.3 Hall (a) (b) 7.6 (a) y y v 7.6 (b) x Lorentz m =( e ) v v y x Lorentz z Lorentz z (c) z z E h Hall Hall effect field Hall e =( e )E h z Hall = m + e =( e ) v +( e )E h.

102 7 z (a) I y x z (b) I y x z (c) E h I y x 7.6: Hall Hall z m e y Hall z z z Hall y z x z Hall Hall Hall effect Hall Hall electromotive force

7.4 103 7.4 Ampère I C E, θ b D a E C,D S 7.7: 7.7 θ 7.7 C DE C DE C = I C = Iasin(π θ) k = Iasin θ k, DE = Iasin θ k k CD E CD E CD = I CD = Ibn, E = I E = Ibn n Ib N = CD CE cos θ k = Iabcos θ k = IS S ab S IS magnetic moment IS θ π/2 N

104 7 IS IS S N N S 7.4 a I I ds a θ θ ds ds d ds d 7.8: θ I ds ds θ + π/2 ( d = I ds = I ds sin θ + π ) n = Iacos θ dθ n 2 n a ds a dθ θ = π θ I ds d = Iacos θ dθ n = Iacos θ dθ n d 2a cos θ dn = Iacos θ 2a cos θ dθ =2Ia 2 cos 2 θ dθ θ π/2 π/2 N = π/2 π/2 2Ia 2 cos θ dθ = πa 2 I.

7.5 105 7.5 Coulomb Coulomb N +q m S q m m = 1 4πµ 0 q m q m r 2 (7.7) µ 0 Wb = J/A Coulomb P q m m H H H N/Wb = A/m m = q m H. (7.8) = µ 0 H (7.9) ±q m magnetic dipole 7.9 L q m z +q m +q m L/ 2 O L p m = q m L L/ 2 q m q m 7.9: q m +q m L p m = q m L. (7.10) magnetic dipole moment 7.9

106 7 z q m +q m z z r θ (3.11) H r (r, θ) = 2p m cos θ 4πµ 0 r 3 H θ (r, θ) = p m sin θ 4πµ 0 r 3 (7.11) 7.10 H N N = p m H. (7.12) N 7.10 +q m H N +q m H q m q m H 7.10: H p m θ p m H = p m H sin θ = q m LH sin θ