2 3, 4, 5 6 2. [1] [2] [3]., [4], () [3], [5]. Mel Frequency Cepstral Coefficients (MFCC) [9] Logan [4] MFCC MFCC Flexer [10] Bogdanov2010 [3] [14],,,



Similar documents
,, WIX. 3. Web Index 3. 1 WIX WIX XML URL, 1., keyword, URL target., WIX, header,, WIX. 1 entry keyword 1 target 1 keyword target., entry, 1 1. WIX [2

DEIM Forum 2012 E Web Extracting Modification of Objec

Web Hashtag Hashtag Twitter Hashtag Twitter Hashtag Hashtag Hashtag Twitter Hashtag Twitter Hashtag contexthashtag contexthashtag Hashtag contexthasht

Lyra X Y X Y ivis Designer Lyra ivisdesigner Lyra ivisdesigner 2 ( 1 ) ( 2 ) ( 3 ) ( 4 ) ( 5 ) (1) (2) (3) (4) (5) Iv Studio [8] 3 (5) (4) (1) (

3.1 Thalmic Lab Myo * Bluetooth PC Myo 8 RMS RMS t RMS(t) i (i = 1, 2,, 8) 8 SVM libsvm *2 ν-svm 1 Myo 2 8 RMS 3.2 Myo (Root

WISS 2018 [2 4] [5,6] Query-by-Dancing Query-by- Dancing Cao [1] OpenPose 2 Ghias [7] Query by humming Chen [8] Query by rhythm Jang [9] Query-by-tapp

1: 2: 3: 4: 2. 1 Exploratory Search [4] Exploratory Search 2. 1 [7] [8] [9] [10] Exploratory Search

IPSJ-TOM

IPSJ SIG Technical Report Vol.2009-DPS-141 No.20 Vol.2009-GN-73 No.20 Vol.2009-EIP-46 No /11/27 1. MIERUKEN 1 2 MIERUKEN MIERUKEN MIERUKEN: Spe

[2][3][4][5] 4 ( 1 ) ( 2 ) ( 3 ) ( 4 ) 2. Shiratori [2] Shiratori [3] [4] GP [5] [6] [7] [8][9] Kinect Choi [10] 3. 1 c 2016 Information Processing So

GUI(Graphical User Interface) GUI CLI(Command Line Interface) GUI

IPSJ SIG Technical Report Vol.2014-DBS-159 No.6 Vol.2014-IFAT-115 No /8/1 1,a) 1 1 1,, 1. ([1]) ([2], [3]) A B 1 ([4]) 1 Graduate School of Info

2

Microsoft Word - deim2011_new-ichinose doc

2. CABAC CABAC CABAC 1 1 CABAC Figure 1 Overview of CABAC 2 DCT 2 0/ /1 CABAC [3] 3. 2 値化部 コンテキスト計算部 2 値算術符号化部 CABAC CABAC

1. HNS [1] HNS HNS HNS [2] HNS [3] [4] [5] HNS 16ch SNR [6] 1 16ch 1 3 SNR [4] [5] 2. 2 HNS API HNS CS27-HNS [1] (SOA) [7] API Web 2


27 YouTube YouTube UGC User Generated Content CDN Content Delivery Networks LRU Least Recently Used UGC YouTube CGM Consumer Generated Media CGM CGM U

Run-Based Trieから構成される 決定木の枝刈り法

BOK body of knowledge, BOK BOK BOK 1 CC2001 computing curricula 2001 [1] BOK IT BOK 2008 ITBOK [2] social infomatics SI BOK BOK BOK WikiBOK BO

Input image Initialize variables Loop for period of oscillation Update height map Make shade image Change property of image Output image Change time L

(2012 rev.1.23) Web DVD 1 1 DVD SF DVD ( ) ( ) ( ) DVD 0.2 ( ) ( ) ( ) amazon.com (MovieLens) (Resnick et al., 1994) 1

(a) 1 (b) 3. Gilbert Pernicka[2] Treibitz Schechner[3] Narasimhan [4] Kim [5] Nayar [6] [7][8][9] 2. X X X [10] [11] L L t L s L = L t + L s


Songrium: 多様な関係性に基づく音楽視聴支援サービス

IPSJ SIG Technical Report Vol.2011-EC-19 No /3/ ,.,., Peg-Scope Viewer,,.,,,,. Utilization of Watching Logs for Support of Multi-

IPSJ-MUS

main.dvi

理工ジャーナル 23‐1☆/1.外村

([ ]!) name1 name2 : [Name]! name SuperSQL,,,,,,, (@) < >@{ < > } =,,., 200,., TFE,, 1 2.,, 4, 3.,,,, Web EGG [5] SSVisual [6], Java SSedit( ss

[6] DoN DoN DDoN(Donuts DoN) DoN 4(2) DoN DDoN 3.2 RDoN(Ring DoN) 4(1) DoN 4(3) DoN RDoN 2 DoN 2.2 DoN PCA DoN DoN 2 DoN PCA 0 DoN 3. DoN

<4D F736F F D20838A B F955C8E8682A982E796DA8E9F914F5F A815B FD B A5F E646F63>

. Yahoo! 1!goo 2 QA..... QA Web Web [1]Web Web Yin [2] Web Web Web. [3] Web Wikipedia 1 2

1 Kinect for Windows M = [X Y Z] T M = [X Y Z ] T f (u,v) w 3.2 [11] [7] u = f X +u Z 0 δ u (X,Y,Z ) (5) v = f Y Z +v 0 δ v (X,Y,Z ) (6) w = Z +


IPSJ SIG Technical Report Vol.2013-CE-122 No.16 Vol.2013-CLE-11 No /12/14 Android 1,a) 1 1 GPS LAN 2 LAN Android,,, Android, HTML5 LAN 1. ICT(I

DEIM Forum 2009 C8-4 QA NTT QA QA QA 2 QA Abstract Questions Recomme

Vol. 28 No. 2 Apr Web Twitter/Facebook UI Twitter Web Twitter/Facebook e.g., Web Web UI 1 2 SNS 1, 2 2

2 21, Twitter SNS [8] [5] [7] 2. 2 SNS SNS Cheng [2] Twitter [6] Backstrom [1] Facebook 3 Jurgens

Microsoft Word - takenaka_report.doc

日立評論 2014年10月号:人流・交通流ビッグデータを活用した都市経営基盤

IPSJ SIG Technical Report Vol.2013-HCI-152 No /3/13 1,a) 1,b) 2,c) / GPS Bluetooth(BT) WiFi BT WiFi 1. Bluetooth WiFi 1 / 1 2 a)

.L.....C1208.qxd

DEIM Forum 2016 E3-6 : SERVA

The copyright of this material is retained by the Information Processing Society of Japan (IPSJ). The material has been made available on the website

Transcription:

DEIM Forum 2016 E1-4 525-8577 1 1-1 E-mail: is0111rs@ed.ritsumei.ac.jp, oku@fc.ritsumei.ac.jp, kawagoe@is.ritsumei.ac.jp 373 1.,, itunes Store 1, Web,., 4,300., [1], [2] [3],,, [4], ( ) [3], [5].,,.,,,, [6]. [6],. EXILE EXILE 1https://www.apple.com/jp/itunes/ EXILE EXILE (a) (b) (c) 2 2

2 3, 4, 5 6 2. [1] [2] [3]., [4], () [3], [5]. Mel Frequency Cepstral Coefficients (MFCC) [9] Logan [4] MFCC MFCC Flexer [10] Bogdanov2010 [3] [14],,,,,, (a) (b) (c) [11] [11] 3. Tada [14] WAV 909 Punk ClassicsPopEasy Listening 15 217 79 909 909 itunes Search API 2 373 3. 1 (1) 373 1 (2) 1 {TT, TF, FT, FF} 2 5 (3) (1)(2) 1 3. 2 2016 12 16 26 373 1 30 11,190 155 1 4 5 1 2 3, 727 4, 031 2https://www.apple.com/itunes/affiliates/resources/documentation/itunesstore-web-service-search-api.html

1 TT TF FT FF TT (1,125) TF (148) FT (1,131) FF (8,786) 2 5 4 3 2 1 4. 3. 4. 1-3. - - (1) u i U a j A TT k ij (2) k ij i j (3) 1 (4) 1 (5) - K K 77 55 - (1) u i U a j A 4 5 r ij (2) r ij i j (3) 1 (4) 1 (5) - R R 107 121 4. 2 - K R 2 1 (1) [13] K -- 20 (2) - a j 20 (3) a j a l sim(a j, a l ) (4) sim(a j, a l ) j l AK (5) AK 2 (v 1, v 2) (6) a j (v 1j, v 2j) v 1j v 1 j 2 1 R 2 5. 4. 5. 1

2 3 u i P i (1) P i (2) a j A 1 u i TT4 5 a j P i (3) (2) 5. 2 5. 1 u i S i (1) S i (2) a j A 1 u i TF FT FF4 5 a j S i (3) S i P i (4) (2) (3) 5. 3 u i 3 P i S i u i TT TF FT FF One-Class SVM u i 4 u i 4 51 2 One-Class SVM u i 3 4 3 FictionJunction YUUKA, KOTOKO, Silent Point 4 u i 6.

4, 2. [1] F. Ricci, L. Rokach, B. Shapira, P.B. Kantor (Eds.), Recommender Systems Handbook, Springer, 2011. [2] Y. Koren, R. Bell, C. Volinsky, Matrix factorization techniques for recommender systems, IEEE Computer 42 (8) (2009) 30 37. [3] D. Bogdanov, M. Haro, F. Fuhrmann, E. Gomez, and P. Herrera, Content-based music recommendation based on user preference examples Categories and Subject Descriptors, in Womrad 2010: The 4th ACM Conference on Recommender Systems. Workshop on Music Recommendation and Discovery, 2010. [4] B. Logan and A. Salomon, A Content-Based Music Similarity Function, 2001. [5] M. Levy and M. Sandler. Music information retrieval using social tags and audio. IEEE Transactions on Multimedia, 11(3):383 395, 2009. [6] :, - Web II -, Vol.25, No.1, pp.2 10, 2013. [7],, and,, in, 2012, vol. 11, no. 2, pp. 23 29. [8] : Vol. 68. No. 1, pp. 16 21, 2012. [9] B. Logan, Mel Frequency Cepstral Coefficients for Music Modeling, in ISMIR 2000:Proceedings of International Symposium on Music Information Retrieval, 2000. [10] A. Flexer, D. Schnitzer, M. Gasser, and G. Widmer, Playlist Generation Using Start and End Songs,in Ninth International Conference on Music Information Retrieval, 2008, pp. 2 7. [11] Y. Hijikata, T. Shimizu, and S. Nishida,Discovery-oriented collaborative filtering for improving user satisfaction, in IUI 2009:Proceedings of the 14th international conference on Intelligent user interfaces, 2009, p. 67 76. [12] Yehuda Koren, Robert Bell, Chris Volinsky, Matrix Factorization Techniques for Recommender Systems, Computer, vol.42, no. 8, pp. 30-37, August 2009, doi:10.1109/mc.2009.263 [13],, 51, 9, 2012 9 [14] Keigo Tada, Ryosuke Yamanishi, Shohei Kato:Interactive Music Recommendation System for Adapting Personal Affection, 11th International Conference on Entertainment Computing, Lecture Notes in Computer Science Vol.7522, pp.417?510, 2012 JSPS 15K12151 (2015-19)