4 4 2 RAW 4 4 4 (PCA) 4 4 4 4 RAW RAW [5] 4 RAW 4 Park [12] Park 2 RAW RAW 2 RAW y = Mx + n. (1) y RAW x RGB M CFA n.. R G B σr 2, σ2 G, σ2 B D n ( )



Similar documents
IPSJ SIG Technical Report Vol.2012-CVIM-182 No /5/ RGB [1], [2], [3], [4], [5] [6], [7], [8], [9] 1 (MSFA: Multi-Spectrum Filt

16 June RAW Fig. 2 High resolution color image reconstruction from RAW data. u(i 1,i 2 )= p(i 1 x, i 2 y)i(x, y)dxdy (1) 1 demosaicking Fig. 1

h(n) x(n) s(n) S (ω) = H(ω)X(ω) (5 1) H(ω) H(ω) = F[h(n)] (5 2) F X(ω) x(n) X(ω) = F[x(n)] (5 3) S (ω) s(n) S (ω) = F[s(n)] (5

204/3 Vol. J97 A o. 3 HDR HDR wavelet-shrinkage wavelet wavelet wavelet-shrinkage wavelet RGB wavelet wavelet wavelet HDR wavelet 2.

SICE東北支部研究集会資料(2017年)

1 Kinect for Windows M = [X Y Z] T M = [X Y Z ] T f (u,v) w 3.2 [11] [7] u = f X +u Z 0 δ u (X,Y,Z ) (5) v = f Y Z +v 0 δ v (X,Y,Z ) (6) w = Z +

2007/8 Vol. J90 D No. 8 Stauffer [7] 2 2 I 1 I 2 2 (I 1(x),I 2(x)) 2 [13] I 2 = CI 1 (C >0) (I 1,I 2) (I 1,I 2) Field Monitoring Server

2003/3 Vol. J86 D II No Fig. 1 An exterior view of eye scanner. CCD [7] CCD PC USB PC PC USB RS-232C PC

E-1E-9 1 5) 15) ) 1 E-1 E-5 E-1E-5 11) 14 (E-2)(E-3) E-1E-5 Exif E-6E-9 E-6 2.1, 2.2 E E-1 E-5 E-6E-9 1-1) 1 Exif 11) (E-1) (E-2E-5) E-7

(a) 1 (b) 3. Gilbert Pernicka[2] Treibitz Schechner[3] Narasimhan [4] Kim [5] Nayar [6] [7][8][9] 2. X X X [10] [11] L L t L s L = L t + L s

技術の系統化調査報告「プロセス制御システムの技術系統化調査」

25 11M n O(n 2 ) O(n) O(n) O(n)

2.2 (a) = 1, M = 9, p i 1 = p i = p i+1 = 0 (b) = 1, M = 9, p i 1 = 0, p i = 1, p i+1 = 1 1: M 2 M 2 w i [j] w i [j] = 1 j= w i w i = (w i [ ],, w i [

H(ω) = ( G H (ω)g(ω) ) 1 G H (ω) (6) 2 H 11 (ω) H 1N (ω) H(ω)= (2) H M1 (ω) H MN (ω) [ X(ω)= X 1 (ω) X 2 (ω) X N (ω) ] T (3)

スライド 1

スライド 1

IPSJ SIG Technical Report Vol.2010-CVIM-170 No /1/ Visual Recognition of Wire Harnesses for Automated Wiring Masaki Yoneda, 1 Ta

1

LMS NLMS LMS Least Mean Square LMS Normalized LMS NLMS AD 3 1 h(n) y(n) d(n) FIR w(n) n = 0, 1,, N 1 N N =

す 局所領域 ωk において 線形変換に用いる係数 (ak 画素の係数 (ak bk ) を算出し 入力画像の信号成分を bk ) は次式のコスト関数 E を最小化するように最適化 有さない画素に対して 式 (2) より画素値を算出する される これにより 低解像度な画像から補間によるアップサ E(

IPSJ SIG Technical Report 1, Instrument Separation in Reverberant Environments Using Crystal Microphone Arrays Nobutaka ITO, 1, 2 Yu KITANO, 1


3 2 2 (1) (2) (3) (4) 4 4 AdaBoost 2. [11] Onishi&Yoda [8] Iwashita&Stoica [5] 4 [3] 3. 3 (1) (2) (3)

本文6(599) (Page 601)

図 2: 高周波成分を用いた超解像 解像度度画像とそれらを低解像度化して得られる 低解像度画像との差により低解像度の高周波成分 を得る 高解像度と低解像度の高周波成分から位 置関係を保ったままパッチ領域をそれぞれ切り出 し 高解像度パッチ画像と低解像度パッチ画像の ペアとしてデータベースに登録する

untitled

(4) ω t(x) = 1 ω min Ω ( (I C (y))) min 0 < ω < C A C = 1 (5) ω (5) t transmission map tmap 1 4(a) t 4(a) t tmap RGB 2 (a) RGB (A), (B), (C)

pp d 2 * Hz Hz 3 10 db Wind-induced noise, Noise reduction, Microphone array, Beamforming 1

THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE. TV A310

Vol1-CVIM-172 No.7 21/5/ Shan 1) 2 2)3) Yuan 4) Ancuti 5) Agrawal 6) 2.4 Ben-Ezra 7)8) Raskar 9) Image domain Blur image l PSF b / = F(

258 5) GPS 1 GPS 6) GPS DP 7) 8) 10) GPS GPS ) GPS Global Positioning System

光学

08_研究速報_3校_1002.indd

2. CABAC CABAC CABAC 1 1 CABAC Figure 1 Overview of CABAC 2 DCT 2 0/ /1 CABAC [3] 3. 2 値化部 コンテキスト計算部 2 値算術符号化部 CABAC CABAC

4. C i k = 2 k-means C 1 i, C 2 i 5. C i x i p [ f(θ i ; x) = (2π) p 2 Vi 1 2 exp (x µ ] i) t V 1 i (x µ i ) 2 BIC BIC = 2 log L( ˆθ i ; x i C i ) + q

(3.6 ) (4.6 ) 2. [3], [6], [12] [7] [2], [5], [11] [14] [9] [8] [10] (1) Voodoo 3 : 3 Voodoo[1] 3 ( 3D ) (2) : Voodoo 3D (3) : 3D (Welc

3: 2: 2. 2 Semi-supervised learning Semi-supervised learning [5,6] Semi-supervised learning Self-training [13] [14] Self-training Self-training Semi-s

(MIRU2008) HOG Histograms of Oriented Gradients (HOG)

Duplicate Near Duplicate Intact Partial Copy Original Image Near Partial Copy Near Partial Copy with a background (a) (b) 2 1 [6] SIFT SIFT SIF

aisatu.pdf

Sigma

Sigma

IPSJ SIG Technical Report Vol.2012-CG-149 No.13 Vol.2012-CVIM-184 No /12/4 3 1,a) ( ) DB 3D DB 2D,,,, PnP(Perspective n-point), Ransa

1611 原著 論文受付 2009 年 6 月 2 日 論文受理 2009 年 9 月 18 日 Code No. 733 ピクセル開口率の向上による医用画像表示用カラー液晶モニタの物理特性の変化 澤田道人 石川晃則 1) 松永沙代子 1) 1) 石川陽子 有限会社ムツダ商会 1) 安城更生病院放射

IPSJ-CVIM

c2

Miyazaki-3DForum dvi

IPSJ SIG Technical Report 1,a) 1,b) 1,c) 1,d) 2,e) 2,f) 2,g) 1. [1] [2] 2 [3] Osaka Prefecture University 1 1, Gakuencho, Naka, Sakai,

1 Table 1: Identification by color of voxel Voxel Mode of expression Nothing Other 1 Orange 2 Blue 3 Yellow 4 SSL Humanoid SSL-Vision 3 3 [, 21] 8 325

Microsoft Word - toyoshima-deim2011.doc

xx/xx Vol. Jxx A No. xx 1 Fig. 1 PAL(Panoramic Annular Lens) PAL(Panoramic Annular Lens) PAL (2) PAL PAL 2 PAL 3 2 PAL 1 PAL 3 PAL PAL 2. 1 PAL

2 74

2 DS SS (SS+DS) Fig. 2 Separation algorithm for motorcycle sound by combining DS and SS (SS+DS). 3. [3] DS SS 2 SS+DS 1 1 B SS SS 4. NMF 4. 1 (NMF) Y

2004

1 Web [2] Web [3] [4] [5], [6] [7] [8] S.W. [9] 3. MeetingShelf Web MeetingShelf MeetingShelf (1) (2) (3) (4) (5) Web MeetingShelf

Silhouette on Image Object Silhouette on Images Object 1 Fig. 1 Visual cone Fig. 2 2 Volume intersection method Fig. 3 3 Background subtraction Fig. 4

2005 1

untitled

(MIRU2010) Geometric Context Randomized Trees Geometric Context Rand

2_05.dvi

Vol. 44 No. SIG 9(CVIM 7) ) 2) 1) 1 2) 3 7) 1) 2) 3 3) 4) 5) (a) (d) (g) (b) (e) (h) No Convergence? End (f) (c) Yes * ** * ** 1

技術の系統化調査報告「透過型電子顕微鏡技術発展の系統化調査」

WE7281_help





A B C E ( ) F

白山の自然誌21 白山の禅定道

平成16年度 市政年報

Micro-D 小型高密度角型コネクタ

2.R R R R Pan-Tompkins(PT) [8] R 2 SQRS[9] PT Q R WQRS[10] Quad Level Vector(QLV)[11] QRS R Continuous Wavelet Transform(CWT)[12] Mexican hat 4

A Study of Adaptive Array Implimentation for mobile comunication in cellular system GD133

Microsoft PowerPoint _秀英体の取組み素材(予稿集).ppt

IEEE HDD RAID MPI MPU/CPU GPGPU GPU cm I m cm /g I I n/ cm 2 s X n/ cm s cm g/cm

10_08.dvi

DEIM Forum 2017 E Netflix (Video on Demand) IP 4K [1] Video on D

パナソニック技報

sumi.indd

paper.dvi

it-ken_open.key

特集_03-07.Q3C

03_特集2_3校_0929.indd

Abstract This paper concerns with a method of dynamic image cognition. Our image cognition method has two distinguished features. One is that the imag

Computer Security Symposium October ,a) 1,b) Microsoft Kinect Kinect, Takafumi Mori 1,a) Hiroaki Kikuchi 1,b) [1] 1 Meiji U

004139 医用画像‐27‐3/★追悼文‐27‐3‐0 松本様

kobe_sar4.p65

PSF SN 2 DFD PSF SN PSF PSF PSF 2 2 PSF 2 PSF PSF 2 3 PSF 4 DFD PSF PSF 3) DFD Levin 4) PSF DFD KL KL PSF DFD 2 Zhou 5) 2 DFD DFD DFD DFD Zhou 2

THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE. TRECVID2012 Instance Search {sak

high collar

Optical Flow t t + δt 1 Motion Field 3 3 1) 2) 3) Lucas-Kanade 4) 1 t (x, y) I(x, y, t)

A Feasibility Study of Direct-Mapping-Type Parallel Processing Method to Solve Linear Equations in Load Flow Calculations Hiroaki Inayoshi, Non-member

1 Fig. 1 Extraction of motion,.,,, 4,,, 3., 1, 2. 2.,. CHLAC,. 2.1,. (256 ).,., CHLAC. CHLAC, HLAC. 2.3 (HLAC ) r,.,. HLAC. N. 2 HLAC Fig. 2


5D1 SY0004/14/ SICE 1, 2 Dynamically Consistent Motion Design of Humanoid Robots even at the Limit of Kinematics Kenya TANAKA 1 and Tomo

IPSJ SIG Technical Report Vol.2010-CVIM-171 No /3/18 Scene Point M Aperture 1 u v m m b Depth from defocus (PSF) Coded Imaging Hajime Nagahara

,,.,.,,.,.,.,.,,.,..,,,, i

2.2 6).,.,.,. Yang, 7).,,.,,. 2.3 SIFT SIFT (Scale-Invariant Feature Transform) 8).,. SIFT,,. SIFT, Mean-Shift 9)., SIFT,., SIFT,. 3.,.,,,,,.,,,., 1,

BDH Cao BDH BDH Cao Cao Cao BDH ()*$ +,-+.)*$!%&'$!"#$ 2. 1 Weng [4] Metric Learning Weng DB DB Yang [5] John [6] Sparse Coding sparse coding DB [7] K

平成 28 年 6 月 3 日 報道機関各位 東京工業大学広報センター長 岡田 清 カラー画像と近赤外線画像を同時に撮影可能なイメージングシステムを開発 - 次世代画像センシングに向けオリンパスと共同開発 - 要点 可視光と近赤外光を同時に撮像可能な撮像素子の開発 撮像データをリアルタイムで処理する

Transcription:

RAW 4 E-mail: hakiyama@ok.ctrl.titech.ac.jp Abstract RAW RAW RAW RAW RAW 4 RAW RAW RAW 1 (CFA) CFA Bayer CFA [1] RAW CFA 1 2 [2, 3, 4, 5]. RAW RAW RAW RAW 3 [2, 3, 4, 5] (AWGN) [13, 14] RAW 2 RAW RAW RAW RAW [6, 7, 12] 3 [8, 9, 10, 11] RAW RAW RAW 4 G 2 4

4 4 2 RAW 4 4 4 (PCA) 4 4 4 4 RAW RAW [5] 4 RAW 4 Park [12] Park 2 RAW RAW 2 RAW y = Mx + n. (1) y RAW x RGB M CFA n.. R G B σr 2, σ2 G, σ2 B D n ( ) D m ( ) ˆx = D n (D m (Mx + n)). (2). η = D m (Mx + n) x. (3) ˆx = D m (D n (Mx + n)). (4) RAW RAW RAW RAW 3 4 3.1 RAW 1 4 RAW 4 G R B 2 4 1 4 4 4 4 4 4 GRBG RGGB BGGR GBRG 1 RAW 4 4 4 2

1 2 4 4 4 4 4 RAW RAW 4 4 RAW 3.2 4 4 G 1, R, B, G 2 4 RGB 4 1 4 Park RGB RGB 4 4 [12] RAW [7] 4 [ ] X = x 1 + n 1 x 2 + n 2 x m + n m, (5) Σ = 1 m 1 ( X µ 1 T m)( X µ 1 T m) T, (6) µ = 1 m m x i. (7) i=1 x i i 4 n i i m 4 1 m 1 m T Σ = Σ diag ( [ σ 2 Y 1 σ 2 Y 2 σ 2 Y 3 σ 2 Y 4 ] T ). (8) diag(z i ) z i σ 2 k 4 k GRBG

3 Y 1 G 1 Y 2 Y 3 = P R B, (9) Y 4 G 2 P 11 P 12 P 13 P 14 P = P 21 P 22 P 23 P 24 P 31 P 32 P 33 P 34. (10) P 41 P 42 P 43 P 44 P Σ v k. [ ] T P = v 1 v 2 v 3 v 4. (11) P 4. k σ 2 Y k = P 2 1kσ 2 G + P 2 2kσ 2 R + P 2 3kσ 2 B + P 2 4kσ 2 G. (12) 4. 3.3 4 4 RAW 4 RAW 4 4 1 (a) (b) (34.49dB). (35.28dB). 4 (σ = 20). RAW 4 3 4 GRBG RGGB BGGR GBRG 4 4 4 RAW 4 4 RAW 4 4 2 RAW RAW RAW (PSNR)

1 24 RAW PSNR[dB] ( ) σ [14] to CFA [7] [12] proposed 5 40.11 39.54 39.49 40.06 10 37.33 36.39 36.94 37.58 15 35.50 34.32 35.54 36.16 20 34.04 32.74 34.51 35.12 30 31.76 30.36 32.90 33.45 40 29.96 28.57 31.49 31.97 CPSNR [db] 40 38 36 34 32 30 Proposed [12] [10] [11] [14]toCFA [9] [7] 28 5 10 15 20 25 30 35 40 Noise level PSNR [db] 50 45 40 35 30 Proposed [12] [14]toCFA [7] 25 0 10 20 30 40 Noise sigma 5 PSNR. RAW RAW RAW CPSNR Kodak high resolution image dataset 24 2048 3072 RAW RAW 0 RAW [14] [5] 4.1 RAW RAW BM3D [14] RAW PCASAD [7] Park [12] BM3D [14] RAW 6 CPSNR. RAW BM3D Park BM3D 1 5 Kodak dataset 24 PSNR PSNR 4.2 RAW CFA [5] LPAICI [9], JDDTV [10], LSLCD [11] RAW 2 6 24 CPSNR CPSNR BM3D [14] RAW CPSNR Park [12] 0.5dB 7 Park BM3D

2 24 CPSNR[dB] ( ) Type Dm Dm Dn Joint Dn and Dm Dn Dm [5] σ [5] [5] + [14] [9] [10] [11] [14]toCFA [7] [12] proposed 5 34.84 38.76 38.48 38.99 39.01 39.48 39.13 39.07 39.52 10 29.35 35.38 35.81 36.80 36.67 36.97 36.38 36.78 37.32 15 26.01 32.92 34.16 35.40 35.26 35.17 34.49 35.41 35.99 20 23.63 30.99 32.93 34.35 34.12 33.68 33.01 34.46 34.98 30 20.32 28.10 31.01 32.62 N/A 31.33 30.74 32.81 33.35 40 18.04 26.00 29.47 31.12 N/A 29.46 29.00 31.41 31.89 [11] σ = 20. (a) ground truth (b) [5] (c) [5]+[14] (d) [9] (e) [10] (f) [11] (g) [14]toCFA (h) [7] (i) [12] (j) proposed 7 Kodak high resolution image dataset (σ = 20). Park [12] 5 RAW RAW 4 RAW [1] B. Bayer, Color imaging array, U.S. Patent 3971065, 1976. [2] L. Zhang and X. Wu, Color demosaicking via directional linear minimum mean square-error estimation, IEEE Trans. on Image Processing, vol. 14, no. 12, pp. 2167 2178, 2005. [3] X. Li, B. Gunturk, and L. Zhang, Image Demosaicing: A Systematic Survey, Proc. SPIE Electronic Imaging, vol. 6822, pp. 68221, 2008. [4] L. Zhang, X. Wu, A. Buades, and X. Li, Color demosaicking by local directional interpolation and nonlocal adaptive thresholding, Journal of Electronic Imaging, vol. 20, no. 2, pp. 023016 023016, 2011. [5] D. Kiku, Y. Monno, M. Tanaka, and M. Okutomi, Residual Interpolation for Color Image Demosaicking, Proc. of IEEE Int. Conf. on Image Processing (ICIP), pp. 2304 2308, 2013. [6] A. Danielyan, M. Vehvilainen, A. Foi, V. Katkovnik, and K. Egiazarian Cross-color BM3D filtering of noisy raw data, in Proc. International Workshop on Local and Non-Local Approximation in Image Processing LNLA, pp.

125 129, 2009. [7] L. Zhang, R. Lukac, X. Wu, and D. Zhang, PCA-based spatially adaptive denoising of CFA images for single-sensor digital cameras, IEEE Trans. on Image Processing, vol. 18, no. 4, pp. 797 812, 2009. [8] K. Hirakawa, and T.W. Parks, Joint demosaicing and denoising Image Processing, IEEE Trans. on Image Processing, vol. 15, no. 8, pp. 2146 2157, 2006. [9] D. Paliy, V. Katkovnik, R. Bilcu, S. Alenius, and K. Egiazarian, Spatially Adaptive Color Filter Array Interpolation for Noiseless and Noisy Data, Int. J. Imaging Sys. Tech., Sp. Iss. Appl. Color Image Process., vol. 17, no. 3, pp. 105 122, 2007. [10] L. Condat, and S. Mosaddegh, Joint demosaicking and denoising by total variation minimization, Proc. of IEEE Int. Conf. on Image Processing (ICIP), pp. 2781 2784, 2012. [11] E. Dubois, and G. Jeon, Demosaicking of Noisy Bayer-Sampled Color Images With Least-Squares Luma-Chroma Demultiplexing and Noise Level Estimation, IEEE Trans. on Image Processing, vol. 22, no. 1, pp. 146 156, 2013. [12] S. H. Park, H. S. Kim, S. Lansel, M. Parmar, and B. A. Wandell, A case for denoising before demosaicking color filter array data Asilomar Conf. on Signals, Systems, and Computers, pp. 860 864, 2009. [13] J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman, Non-local sparse models for image restoration. IEEE Int. Conf. on Computer Vision (ICCV), pp.2272 2279, 2009. [14] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, Image denoising with block-matching and 3D filtering, Proc. SPIE Electronic Imaging, no. 6064A 30, 2006.