untitled



Similar documents
The Most Effective Exercise for Strengthening the Supraspinatus : Evaluation by Magnetic Resonance Imaging by TAKEDA Yoshitsugu and ENDO Kenji Departm

<938C8A4395DB8C9291CC88E789C88A772E696E6462>

SwitchCut 手術手技書

Postoperative Assessment by Using a Torque Machine (BIODEX) and MRIs in Patients treated for a Recurrent Anterior Dislocation or Subluxation of the Sh

00 p01-24

I. はじめに Activities of daily living ADL 1) Osteoarthritis of the knee OAK Anterior cruciate ligament ACL OAK Open kinetic chain OKC 2) OKC OAK

Arthroscopic Treatment for Painful Bennett Lesions of the Shoulder in Baseball Players by M. Yoneda and K. Hayashida Department of Orthopaedic Surgery

Studies of Foot Form for Footwear Design (Part 9) : Characteristics of the Foot Form of Young and Elder Women Based on their Sizes of Ball Joint Girth

<30382D8CB F95B62D8B D468B7690E690B691BC2D3496BC976C2E706466>

研究報告 国内トップリーグ男子バレーボール選手における一側性トレーニングが 両側性筋力および跳躍能力に及ぼす影響 Effect of Single legged Squat Exercises on Bilateral Strength and Physical Ability in the Top

短距離スプリントドリルが大学生野球選手の短距離走速度向上に与える効果

2 10 The Bulletin of Meiji University of Integrative Medicine 1,2 II 1 Web PubMed elbow pain baseball elbow little leaguer s elbow acupun

080.indd

(佐々木先生)

CRA3689A

I. はじめに Anterior Cruciate Ligament; ACL Anterior Tibial Translation; ATT ACL ACL 1,2) 3) ACL anterior shear force Houck 4) ACL ACL Berchuck 5


Vol. No. Honda, et al.,

06_学術_関節単純X線画像における_1c_梅木様.indd

理学療法科学シリーズ臨床運動学第6版サンプル

Web Stamps 96 KJ Stamps Web Vol 8, No 1, 2004


Study on Throw Accuracy for Baseball Pitching Machine with Roller (Study of Seam of Ball and Roller) Shinobu SAKAI*5, Juhachi ODA, Kengo KAWATA and Yu


Fig. 1 Photography of exercise test by Arm Crank Ergometer. Fig. 2 Photography of exercise test by chair with caster. Arm Crank Ergometer Wheelchair T

Vol. 51 No (2000) Thermo-Physiological Responses of the Foot under C Thermal Conditions Fusako IWASAKI, Yuri NANAMEKI,* Tomoko KOSHIB

I. はじめに 1) ASIS PSIS 2) PSIS ASIS X 2) II. 対象と方法 cm kg body mass index X 3) computed tomography:

Changes in Electrodermal Activity Associated with Candies and Chewing Gum Chewing Satoshi Beppu, Takeshi Morita*, Susumu Igarashi **, Kanichi Seto* an

The Stress Roentgenographic Measurement for the Diagnosis of Cruciate Insufficiency of the Knee Joint by Kazuhiko Fukushima and Kosuke Ogata Departmen

2 14 The Bulletin of Meiji University of Integrative Medicine 7 8 V ,15 16,17 18,19 20,21 22 Visual analogue scale VAS Advanced trai

Visual Evaluation of Polka-dot Patterns Yoojin LEE and Nobuko NARUSE * Granduate School of Bunka Women's University, and * Faculty of Fashion Science,

Clinical Question 1 ACL 損傷のリスクファクターにはどのようなものがあるか 要 約 Grade B 大腿骨顆間窩幅が狭いこと, 全身関節弛緩性, 月経周期の卵胞期 ( 女性 ) が ACL 損傷のリスクファクターにあげられる. Grade C 大きな脛骨後方傾斜, 膝関節の過伸

04_原著_福冨恵介.indd


Farrow and Abernethy, ; Jackson and Mogan, 7 Abernethy, 199; Kellman and Garrigan, 9 Masters, iemgmax 3 Ⅱ c

EVALUATION OF MAGNETIC RESONANCE IMAGING (MRI) IN DIAGNOSIS OF ACOUSTIC NEUROMA-COMPARATIVE STUDY WITH PLAIN X-RAY AND CTS- KIMIHISA NOMURA, M.D., MAK

The Evaluation on Impact Strength of Structural Elements by Means of Drop Weight Test Elastic Response and Elastic Limit by Hiroshi Maenaka, Member Sh

0801391,繊維学会ファイバ12月号/報文-01-西川

越智59.qxd

2001 Received November 28, 2014 Current status and long-term changes of the physique and physical fitness of female university students Shiho Hiraku Y

07_学術.indd


Motivation and Purpose There is no definition about whether seatbelt anchorage should be fixed or not. We tested the same test conditions except for t

1..FEM FEM 3. 4.

Oxford Partial Knee 手技書

の測定 リアクティブの測定 リアクティブ 向転換能 Change Of Direction performance <CODp> (Sheppard & Young, 2006) (Henry et al., 2012) 反応課題 ( 単純 選択 専門 ) CODp の測定 ( 直線的 ) 505


a) Extraction of Similarities and Differences in Human Behavior Using Singular Value Decomposition Kenichi MISHIMA, Sayaka KANATA, Hiroaki NAKANISHI a

国土技術政策総合研究所 研究資料


日本感性工学会論文誌

Table 1 Muscle weight (g) and those ratio (%) in M. quadriceps femoris Table 2 Cross-sectional area (mm2) and those ratio (%) in M, quadriceps femoris

Preoperative Evaluations for Traumatic Shoulder Instability due to the HAGL lesion or Capsular Tear on MR Arthrography NISHINAKA Naoya, TSUTSUI Hiroak

Fig. 3 Coordinate system and notation Fig. 1 The hydrodynamic force and wave measured system Fig. 2 Apparatus of model testing

A Angle mmmm A X A SNASNB ANBFMA Uto FHFMIAUto NA mmlto NBmm Angle Distal Jet Distal Jet Distal Jet Distal Jet Distal Jet Distal Jet slot pre adjusted


* Meso- -scale Features of the Tokai Heavy Rainfall in September 2000 Shin-ichi SUZUKI Disaster Prevention Research Group, National R

STUDIES ON THE PHYSICAL FITNESS OF SUMO WRESTLERS (REPORT II) (PHYSICAL FITNESS AND DEVELOPMENT OF THE SEKITORI) SHINKICHI OGAWA, YOSHINORI FURUTA, KE

Fig. 1 KAMOME50-2 Table 1 Principal dimensions Fig.2 Configuration of the hydrofoils (Endurance and sprint foil) Fig. 3 Schematic view of the vortex l

01_渡部先生_21-2.indd

第4部門_13_鉄口宗弘.indd

<303491BA8FE32E696E6464>

明海大学歯学雑誌 36‐2/11.黒岩

Gilovich et al., 1985, p.313 Gilovich et al Adams, 1992; Albright, 1993; Koehler and Conley, 2003; Clark, 2005a, 2005b Gilovi


食道がん化学放射線療法後のsalvage手術

<30388DE288E42E696E6464>


1 2 3

図 1 マーカー, 電極貼付位置 マーカーは骨盤および下肢の骨指標, 右下肢の大腿, 下腿などに合計 39 個貼付した. 電極は大腿直筋, 内側広筋, 外側広筋, 半腱様筋, 大腿二頭筋に対して SENIAM に準じた位置に貼付した. およびハムストリングス前活動の内外側比率と膝外反角度および膝外反

Persona The Personalized Knee Brochure

理学療法検査技術習得に向けた客観的臨床能力試験(OSCE)の試行

”R„`‚å−w‰IŠv†^›¡‚g‡¾‡¯.ren

75 unit: mm Fig. Structure of model three-phase stacked transformer cores (a) Alternate-lap joint (b) Step-lap joint 3 4)

<95DB8C9288E397C389C88A E696E6462>

情報処理学会研究報告 IPSJ SIG Technical Report Vol.2011-MBL-57 No.27 Vol.2011-UBI-29 No /3/ A Consideration of Features for Fatigue Es

perature was about 2.5 Ž higher than that of the control irrespective of wind speed. With increasing wind speeds of more than 1m/s, the leaf temperatu

大学野球の期分けにおける一般的準備期のランニング トレーニングが試合期の大学生投手の実戦状況下 パフォーマンスに与える影響

Study on Application of the cos a Method to Neutron Stress Measurement Toshihiko SASAKI*3 and Yukio HIROSE Department of Materials Science and Enginee

第62巻 第1号 平成24年4月/石こうを用いた木材ペレット

9 月 11 日 ( 金 ) 第 1 会場 8:50 9:00 開会にあたって 41 9:05 9:25 GOTS Traveling Fellow 報告 GT-1 GT-2 9:35 10:35 特別講演 SL-1 10:45 11:45 特別講演 SL-2 12

ジャンプ動作における動的下肢アライメントと体幹バランスの関連性


27 VR Effects of the position of viewpoint on self body in VR environment

Microsoft Word JELS2009再再投稿丸島スタイル適用01_32-43a.doc

Table 1 Characteristics of the study participants in Imari municipal hospital

A Nutritional Study of Anemia in Pregnancy Hematologic Characteristics in Pregnancy (Part 1) Keizo Shiraki, Fumiko Hisaoka Department of Nutrition, Sc

NODERA, K.*, TANAKA, Y.**, RAFAEL, F.*** and MIYAZAKI, Y.**** : Relationship between rate of success and distance of shooting on fade-away shoot in fe

日本統計学会誌, 第44巻, 第2号, 251頁-270頁

8 The Bulletin of Meiji University of Integrative Medicine API II 61 ASO X 11 7 X-4 6 X m 5 X-2 4 X 3 9 X 11 7 API 0.84 ASO X 1 1 MR-angio

Usefulness of the STATAK in a Bankart Repair and Modified Bristow Procedure for Recurrent Anterior Dislocation of the Glenohumeral Joint. by KIMURA Ak

IPDF.qxd


<836F F312E706466>

2012 Vol. 23 No pseudothrombophlebitis pseudothrombophlebitis


Mikio Yamamoto: Dynamical Measurement of the E-effect in Iron-Cobalt Alloys. The AE-effect (change in Young's modulus of elasticity with magnetization

Effects of developed state of thigh muscles on the knee joint dynamics during side cutting The purpose of this study was to investigate the effects of

Fig. 1 Clinical findings and extent of inflammation area in female urethrocystitis Fig. 2 Classification and distribution of female patients with blad

The Evaluation of LBB Behavior and Crack Opening Displacement on Statically Indeterminate Piping System Subjected to Monotonic Load The plastic collap

Transcription:

The Scientific Basis for Prevention of Anterior Cruciate Ligament Injury Nagano, Yasuharu

1 1 1 2 2 3 3 27 2 29 1 30 1 30 2 31 3 32 4 35 3 37 1 38 1 38 2 40 3 44 4 48 2 ACL 52 1 52 2 54 3 58 4 61 3 65 1 65 2 67 3 71 4 78

4 82 1 83 1 83 2 85 3 90 4 93 2 96 1 96 2 98 3 107 4 110 5 113 1 ACL 114 1 114 2 115 3 116 4 124 2 130 1 130 2 132 3 135 4 139 6 143 7 148 1 151 2 Point Cluster Technique 153 154 175 177

1

1 21 ( ACL) ACL 1 20 ACL 20 ACL ACL 20 ACL 2005 1 2008 2 ACL van Mechelen [1] 4 4 ACL ACL

2 1 ACL ACL 3000 1 ACL 8 10[2] 15 45 1750 1 [3] ACL 2 8 [2-10][4, 6, 8-10] [4, 6, 9][7] ACL [11] ACL 70%[2, 3] 70%[3, 4, 12]ACL [3, 12, 13]ACL 2 ACL ACL

2 ACL ACL ACL ACL ACL 3 ACL ACL ACL ACL ACL ACL ACL ACL ACL ACL ACL 4 [7, 12, 14, 15] McNair [14] 20 Boden [12] 70% Myklebust [7] Olsen [15]

32 20 ACL ACL 4 [12, 15-17]Teitz [16] 14 30 Boden [12] 23 Olsen [15] 20 2 1 1 Krosshaug [17] 28 17ms 50ms 2 [18] Krosshaug [19]

ACLMRI (bone bruise)acl MRI [20-24]Mink [20] T2 ACL 72% Rosen [21] ACL 85%83%Graf [22] 1/3 ACL Kaplan [23] 215 MRI ACL Viskontas [24] ACL MRI ACLCipolla [25] ACL 1103 ACL ACL Bellabarba [26] ACL 20 ACL Nishimori [27]ACL ACL

ACL ACL ACL ACL (strain)(force) ACL 1980 Arms [28] ACL ACL 30 40 10 15 Berns [29] ACL Markolf [30] ACL 10 ACL 10 30 ACL Kanamori [31] pivot shift () ACL ACL 30 ACL [32] ACL ACL Renstrom [33] in-vitro ACL ACL 45 ACL Durselen [34] ACL 20 60 ACL

Li [35] ACL 0 30 ACL ACL ACL ACL ACL ACL ACL Withrow [36-38] ACL ACL [36] ACL [37] ACL 30%[38]Weinhold [39] ACL ACL ACL ACL ACL Henning [40] ACL 22 ACL Beynnon [41] ACL ACL 15 30 ACL 60 90 Fleming ACL [42][42-44]

Closed Kinetic Chain ACL 15 ACL ACL Cerulli [45] ACL ACL MRI ACL Li [46]Li [46]ACL 0 90 60 ACL ACL ACL ACL ACL ACL ACL ACL Q Q

[47]Q [47-50]Q [51] Q Q ACL ACL ACL Navicular drop [52](calcaneal angle) Navicular drop ACL Navicular drop [53-55]Smith [56]ACL ACL [56][54]ACL Nguyen [50]Navicular drop ACL Yoshioka [57] Braten [58] Nguyen [50] Craig ACL Dejour [59] Meister [60]ACL

Brandon [61]ACL Stijak [62] ACL ACL ACL ACL 1980 Notch width index [11] Notch width index [63-67] [68-70]ACL Notch width index [68, 71, 72][73, 74] ACL ACL [71, 72]ACL ACL [75][50] [76]Ramesh [77] ACL ACL Uhorchak [71] ACL ACL Myer [78] ACL ACL [79] ACL

Q ACL ACL ACL ACL ACL Huston [80] ACL Chu [81] ACL ACL Dyhre-Poulsen [82]ACL 90ms ACL 100ms [17, 45] 40ms [82] ACL 1970 Markolf [83] (stiffness) 2

4 Lloyd [84] Wojtys [85][86] [85, 86] ACL ACL ACL ACL Colby [87] ACL ACL Fagenbaum[88] Cowling [89] Sell [90] Chappell [91] ACL Sell [92]

ACL Sigward [93] Landry [94] [95] ACL Kellis [96] Fagenbaum [88] Sigward [97] ACL ACL ACL ACL [3, 12, 13]

[12, 15-17] ACL ACL ACL Grood [98] Wu [99] [100-102] [103][104-106] [103-105] McLean [105] Salci [102] Ford [104]McLean [105][103, 105] [105] [103, 105] [102, 103] [105] [103]Hewett [107] ACL ACL

ACL [108, 109][88] [89, 106, 110] [106, 110]Lephart [108] [89, 110, 111] [106, 110][111] Hewett [111] Lephart[108] [106, 109]Pappas [106] ACL 40

Jacobs [112] ACL ACL Chappell [113] [91] [114] ACL [39]Sell [90]

[114] ACL ACL ACL ACL 45 [115-117] [93-95, 118-120] McLean [121] ACL ACL [115-118][119, 120, 122] McLean [116] McLean [117]Pollard [120] Sigward [93] [93][94, 95, 116, 117]

[95, 117] [116, 120] [117, 120] [94, 116] [117][95, 118, 119] [122][94, 120][95] [120] [93, 94] [95, 123] [94, 95] [120] Hawkins [124] ACL

ACL [96, 110, 125] [110][110, 112, 125][112] [88] McLean [105] Moran [126] Chappell [127] ACL ACL Borotikar [128] ACL 15 45 [3] (Maturation) ACL

Hewett [129] (1214 ) (15 ) Quatman [130] Yu [131] 12 ACL Hewett [129] ACL ACL Houck [132] Dempsey [133]

[134][135] Chaudhari [136] ACL ACL McLean [137] (r 2 =0.58, r 2 =0.64) McLean Noyes [138] Barber-Westin 9 10 [139]9 17

[140] Noyes ACL

3 ACL ACL ACL ACL 1 ACL ACL 1990 Henning [141] [142-152] 4 1 ACL ACL ACL ACL ACL Bencke [153] Hewett [154] Chimera [155] Lephart

[156] Hurd [157] Wojtys [158] ACL Lephart [156] Pollard [122] Hewett [154] Noyes [138] Irmischer [159] Myer [160]

Myer [161] ACL [162][156] [154, 163, 164] [163][165] [162, 166] ACL

3 ACL ACL ACL 4 [1] 2 ACL 3 ACL 1 2 ACL 3 4 1 2 5 ACL 1 ACL 2 1 ACL 6 2 5 ACL

7 (Knee rotation)(tibial rotation)

2

1 1 ACL 2 8 [2-4, 7] ACL 70%[3, 4, 12] [3] ACL ACL [167] [8, 10]

2 13 (W 8 W1 5 ) 2005 8 2006 3 (2005-2006 ) 2006 4 2007 3 (2006-2007 ) Injury Report Form ( 1: IRF) Exposure Sheet ( 1) Injury Report Form () Exposure Sheet 15 Injury Report Form Exposure Sheet Player-Hours Player-Hours( PH)()[10] 1000PH ACL ()

3 20052006 10 137 20062007 12 158 PH 20052006 49021PH( 1059PH)20062007 118646PH( 2809PH) 167667PH( PH 3868PH) 20052006 80 2006-2007 135 215 1.282 /1000PH 20052006 22 2006-2007 39 61 15.771 /1000PH Table 2-1-1 () Table 2-1-2 3 ACL () Table 2-1-3 ACL ACL 12 10 7 6 3 5 2 2

Table 2-1-1 Injury location by incidence and injury risk Location Incidence (%) Injury risk Ankle, foot 76 (35.3) 0.453 Knee 46 (21.4) 0.274 Low Back 28 (13.0) 0.167 Thigh 21(9.8) 0.125 Upper limb 13 (6.0) 0.078 Shank 10 (4.7) 0.060 Shoulder 7 (3.3) 0.042 Head 7 (3.3) 0.042 Neck 3 (1.4) 0.018 etc. 4 (1.9) 0.024 Injury risk are presented by incidence/1000 Player-hours Table 2-1-2 Injury diagnosis by incidence and injury risk Diagnosis Incidence (%) Injury risk Ankle lateral sprain 50 (23.3) 0.298 Low back pain 18 (8.4) 0.107 ACL injury 12 (5.6) 0.072 Hamstrings strain 9 (4.2) 0.054 Achilles tendinitis 4 (1.9) 0.024 Low back sprain 4 (1.9) 0.024 Contusion 4 (1.9) 0.024 Medial meniscus injury 4 (1.9) 0.024 Metatarsal stress fracture 4 (1.9) 0.024 Elbow MCL injury 4 (1.9) 0.024 Ankle medial sprain 3 (1.4) 0.018 Ankle sprain etc. 3 (1.4) 0.018 Femoral cartilage damage 3 (1.4) 0.018 Adductor muscle strain 3 (1.4) 0.018 Lateral meniscus injury 3 (1.4) 0.018 Injury risk are presented by incidence/1000 Player-hours

Table 2-1-3 ACL injury by incidence and injury risk Injury situation Incidence Injury risk ACL injury 12 0.072 contact 2 0.012 non-contact 10 0.060 (game) 7 1.810 contact 1 0.259 non-contact 6 1.551 Injury risk are presented by incidence/1000 Player-hours

4 Player-hours(PH) PH Athlete Exposure 1 PH 1.282 /1000PH 15.771 /1000PH Messina [10] 3.6 /1000PH 16.0 /1000PH Deitch [8] WNBA WNBA Messina [10] Fong [168] () ACL Deitch [8] WNBA 12.7% 3.6%ACL

0.9% WNBA [8] ACL WNBA ACL 6 ACL 12 ACL Messina [10]ACL 0.09 /1000PH 0.09 /1000PH[169] 0.31 /1000PH [7] ACL 83%(12 10 )[3, 4, 12] 70% ACL ACL 0.072 /1000PH

3

1 1 ACL ACL 1 [3, 4, 12]ACL 2~8 [2-4, 6, 147] ACL ACL [7, 12, 14] Olsen [15] ACL [104, 107, 113, 115, 116, 119] ACL [87, 100, 101, 115, 116]ACL [116] [93, 120] [170]() ACL [33, 171] [115][91][93, 115] ACL

ACL ACL ACL

2 18 (19.8±4.6 175.0±7.6cm68.7±16.2kg; ±) 19 (19.4±0.9 166.0±7.5cm59.8±7.5kg) 37 10 11 8 8 6 1 (Figure 3-1-1) 30cm 30cm (Figure 3-1-2) 3

30cm Figure 3-1-1 Landing position and arrangement of makers Subjects performed a single limb landing from a 30cm platform. Twenty four reflective markers of 9 mm diameter were secured to the limb. Figure 3-1-2 Experiment setup and test task Subjects landed with their right foot 30cm away from the platform. A seven camera VICON 370 motion analysis system was used.

24 10 6 (Figure 3-1-1)[170] Point Cluster Technique(PCT)[170]PCT PCT Andriacchi [170] 7 (VICON 370; Oxford Metrics Ink., Oxford, UK) 200Hz 1000Hz PCT [170] (PCT 2 )PCT 10 6 Grood [98] (DelSys Bagnoli-8 EMG system) 1/3 1/3

1000Hz 3 60 3 (Intraclass correlation coefficients; ICC)(1, 3) Root Mean Square (RMS) RMS 3 1 1 %MVC (Hamstrings Quadriceps Ratio: HQR)HQR [153] %MVC 50ms 50ms 50ms 50ms [172] 50ms [153] 46ms [173] 3 t U 5%

3 ICC(1, 3) 0.96 0.97 0.96 0.97 0.96 0.80 0.76 0.99 60ms Figure3-1-3 Table3-1-1 Table3-1-2 (p<0.05) (p<0.01; male 38.1±7.6ms, female 43.7 ±8.1ms) Table 3-1-1 Mean (SD) of knee position at foot contact Position at foot contact Flexion (deg) Adduction (deg) External tibial rot. (deg) Ant. translation (mm) Males 15.9 (6.4) 2.0 (2.9) 1.2 (6.0) 2.0 (4.9) Females 18.0 (6.3) 1.8 (2.7) 2.2 (6.0) 3.2 (5.7) Table 3-1-2 Mean (SD) of knee motion during at landing Degree or displacement during the landing Flexion (deg) Adduction (deg) Abduction (deg) Internal tibial rot. (deg) Ant. translation (mm) Males 27.8 (7.2) 1.4 (1.3) 1.7 (1.4) 9.4 (3.7)* 5.9 (2.3) Females 31.2 (6.5) 1.6 (1.1) 2.3 (1.7) 12.6 (5.1)* 7.5 (3.8) *: p < 0.05 between males and females

Figure 3-1-3 Gender-based comparisons of joint motion and GRF data (Mean and SD) Data are presented for Knee Flexion (a), Knee Abduction (b), Internal Tibial Rotation (c), Anterior Tibial Translation (d), and GRF (e).

Figure3-1-4HQR Figure3-1-5 50ms (p<0.001, Figure3-1-4a) 50ms (Figure3-1-4b)HQR 50ms (p<0.001, Figure3-1-5a) 50ms (Figure3-1-5b) Figure 3-1-4 %MVC of the rectus femoris (RF) and the hamstrings (Ham) during the 50 ms time period before foot contact (a), and during the 50 ms time period after foot contact (b) Boxes denote the middle 50% of the range and the median. The whiskers show the extent of the rest of the data. ***p<0.001 between males and females.

Figure 3-1-5 Ham/quad-ratio (HQR) before foot contact (a), and after foot contact (b) Boxes denote the middle 50% of the range and the median. The whiskers show the extent of the rest of data. ***p<0.001 between males and females

4 ACL [3, 12] ACL ACL ACL ACL ACL ACL Cerulli [45] ACL ACL PCT Andriacchi [170] PCT Lafortune [174] PCT [174] 2 PCT Andriacchi [170] ACL [28, 29][30, 32] Graf [22] ACL MRI 1/3 ACL ACL [26]

Waite [175] PCT ACL ACL ACL Screw home mechanism Asano [176] Screw home mechanism 30 Screw home mechanism Asano [176] 30 30 10 15 Asano [176] 0 15 15 20 30 ACL (stiffness)wojtys [86] HQR [91, 93, 115] [177] [178, 179]. [173]

ACL ACL ACL [104, 107, 115, 118, 119] 2 PCT ACL [30, 31] ACL [101, 115, 116][88][118] ACL [116, 180]PCT PCT [170, 181]

[174] ACL ACL ACL

2 ACL 1 ACL ACL ACL [12, 15-17]Olsen [15]ACL ACL ACL ACL ACL ACL ACL [12]- [15]Sell [90] -ACL - ACL Pappas [106] ACL Olsen [15]ACL - - - ACL

ACL ACL -ACL ACL

2 24 (21.1±1.3 166.1±8.3cm59.3±8.2kg; ±) 12 12 6-1 (Figure 3-2-1a)30cm 30cm 3 -(Figure 3-2-1b) 30cm 45 45 3 3 (Figure 3-2-1c) 5 5 1 5 2 4 3

Figure 3-2-1 Sequential photographs of experimental tasks: Single-limb landing (a), plant and cutting (b), and both-limb jump landing.

25 10 6 7 (Hawk; Motion Analysis Corp., Santa Rosa, CA, USA) 200Hz 1000Hz PCT [170] 200ms 3 ICC(1, 3) Bonferroni 5%

3 ICC(1, 3) 0.96 0.98 0.93 0.89 0.97 0.98 200ms Figure3-2-2 Table3-2-1 - (p<0.01)- (p<0.01) - ( p<0.01) (p<0.05)- - ( p<0.01) (p<0.01) Table 3-2-1 Mean (SD) for tasks of joint angle at the time of foot contact. Knee flexion Knee abduction Internal tibial rotation Single limb landing 15.8 (5.0) -4.0 (2.6) -9.0 (3.4) Plant and cutting 19.2 (7.0) -8.2 (3.1) -12.4 (4.3) Both limb jump landing 32.8 (7.1) -2.2 (3.4) 3.0 (5.2) *; p <0.05, ; p <0.01 Table3-2-2 - (p<0.05) - (p<0.01p<0.05)- - (p<0.05p<0.01) Table 3-2-2 Mean (SD) for tasks of peak joint angle. Knee flexion Knee abduction Internal tibial rotation Single limb landing 72.5 (6.7) -1.2 (5.2) 12.3 (5.5) Plant and cutting 70.4 (8.5) -2.6 (6.1) 14.4 (6.0) Both limb jump landing 80.3 (16.4) 7.1 (5.5) 14.9 (5.5) *; p <0.05, ; p <0.01

Table3-2-3 - ( p<0.01) - ( p<0.01) (p<0.01)- ( p<0.01) Table 3-2-3 Mean (SD) for angular excursion (deg) and rate of excursion (deg/ms). Knee abduction Internal tibial rotation Excursion Rate Excursion Rate Single limb landing 6.6 (3.6) 0.12 (0.05) 21.4 (6.4) 0.15 (0.06) Plant and cutting 9.8 (3.8) 0.13 (0.04) 26.8 (6.8) 0.22 (0.07) Both limb jump landing 11.2 (3.6) 0.14 (0.05) 12.1 (4.9) 0.14 (0.05) *; p <0.05, ; p <0.01

Figure 3-2-2 Task-based comparisons of joint motion Data are presented for Knee Flexion (a), Knee Abduction (b), and Internal Tibial Rotation (c).

4 ACL - - - [90, 113, 182] ACL Chappell [113] Sell [90] ACL ACLBesier[182] ACL ACL - - [28, 29][30, 32] ACL

- ACL - -- -ACL [12, 15-17]ACL [90, 113, 182] ACL ACL [38] ACL ACL [30, 32] ACL - - ACL ACL [104, 105, 129] ACL [107][138, 139] Pappas [106] ACL ACL ACL [106]Pappas

ACL ACL [28, 33, 41]ACL ACL ACL ACL ACL ACL ACL [17] ACL ACL [139, 140] PCT ACL

- ACL PCT ACL -ACL - 5 3 ACL ACL ACL

3 1 ACL [4] [15] ACL [100, 101, 108, 115, 116][104, 105, 129] McLean [123]Sigward [183] ACL ACL [16]Zazulak [184][185] Houck [132]45 Blackburn [134] ACL ACL

ACL 1 ACL ACL

2 10 (20.7±1.3 175.0±5.4cm66.9±6.2kg; ±) 10 (20.1±1.4 161.4±5.5cm56.8±7.4kg;) 20 10 7 3 6 (Shuttle run cutting) 1 5m 180 5m (Figure 3-3-1) 3

z y x Foot contact 5m Original motion direction Figure 3-3-1 Shuttle run cutting Subjects ran straight ahead for five meters, planted their cutting foot vertically and then changed direction to move 180 degrees to their original direction of motion.

37 2 10 6 [136, 170] 2 8 (Hawk; Motion Analysis Corp., USA) 200Hz Point Cluster [136, 170] x z ()(+: -: )y z (+: -: ) Andriacchi [170] Grood [98] 50ms 150ms 75ms150ms 150ms 3 ICC(1, 3)

t 5%

3 ICC(1, 3)0.860.8475ms 0.91 0.85 150ms 0.94 0.82 0.92 0.78 Figure 3-3-2 Table 3-3-1 (p<0.05) 75ms (p<0.05) (p<0.05) 75ms 150ms (p<0.05p<0.01p<0.05) (p<0.05) 75ms (p<0.01p<0.01)

Figure 3-3-2 Comparisons of joint motion Data are presented for Knee Flexion/Extension (a), Knee Abduction/Adduction (b), Internal/Internal Tibial Rotation (c), Trunk Forward/Backward Inclination (d), and Trunk Lateral Inclination (e)

Table 3-3-1 Mean (SD) of knee motion and trunk inclination (deg) Knee flexion Trunk forward inclination Trunk lateral inclination a Males Females Males Females Males Females Foot contact 37.5 (10.5) 29.2 (8.0) 38.4 (6.8)* 31.2 (4.8)* 7.3 (6.9)** -5.2 (9.2)** 75ms 56.0 (7.8)* 47.7 (6.4)* 45.1 (8.3)** 35.5 (5.4)** 8.3 (10.8)** -5.6 (9.9)** 150ms 66.5 (9.0) 58.9 (8.5) 51.5 (10.5)* 41.1 (6.4)* 7.8 (16.5) -5.4 (11.3) Excursion 29.0 (5.1) 29.6 (7.7) 13.1 (7.4) 9.9 (3.6) 0.5 (11.1) -0.2 (4.7) Males Females Males Females Foot contact 4.8 (3.7) 5.0 (4.3) 7.8 (5.2) 8.8 (6.8) Minimum peak 3.3 (4.4) -0.6 (5.2) 3.8 (5.6) 0.1 (5.4) Maximum peak 12.9 (5.3) 9.3 (6.7) 19.0 (5.3) 18.6 (4.2) Excursion 9.6 (2.3) 10.0 (3.7) 15.2 (5.9) 18.6 (5.8) a : positive value indicate the direction of original motion *: p < 0.05 between males and females **: p < 0.01 between males and females Knee abduction Internal tibial rotation

Table 3-3-2 75ms 150ms (r=0.60-0.79; p<0.01; Figure 3-3-3: ) 75ms 150ms (r=0.47-0.53; p<0.05) 75ms 150ms (r=-0.53 - -0.60; p<0.01, p<0.01, p<0.05; Figure 3-3-4: ) 150ms (r=-0.49, -0.49; p<0.05; Figure 3-3-5:) (r=-0.48; p<0.05; Figure 3-3-6: )

Table 3-3-2 r values for the association with trunk inclination and knee motion Knee flexion Knee abduction Trunk forward inclination FC b 75ms 150ms Exc. c FC b Min peak Max peak Exc. c FC b Min peak Internal tibial rotation Foot contact 0.76** 0.78** 0.65** -0.25 0.12 0.47* 0.27-0.24-0.12 0.28-0.41-0.60** 75ms 0.72** 0.79** 0.64** -0.19 0.12 0.49* 0.34-0.13-0.07 0.36-0.32-0.60** 150ms 0.64** 0.73** 0.60** -0.13 0.15 0.53* 0.41-0.05-0.01 0.42-0.16-0.53* Excursion 0.21 0.37 0.28 0.07 0.11 0.36 0.39 0.19 0.12 0.38 0.21-0.20 Max peak Exc. c Trunk lateral inclination a FC b 75ms 150ms Exc. c FC b Min peak Max peak Exc. c FC b Min peak Foot contact 0.36 0.44* 0.23-0.23-0.19 0.32 0.16-0.21 0.05 0.42-0.09-0.48* 75ms 0.18 0.29 0.08-0.17-0.24 0.21 0.12-0.10-0.04 0.34-0.05-0.36 150ms -0.01 0.08-0.12-0.16-0.18 0.18 0.15 0.01-0.10 0.27 0.01-0.25 Excursion -0.49* -0.40-0.49* -0.02-0.09-0.07 0.08 0.27-0.25-0.23 0.12 0.12 a : positive value indicate the direction of original motion, b : foot contact, c : excursion *: p < 0.05, **: p < 0.01 Max peak Exc. c

60 Knee flexion at foot contact (deg) 50 40 30 20 10 R = 0.76 0 0 20 40 60 Trunk forward inclination at foot contact (deg) Figure 3-3-3 Associations between trunk forward inclination at foot contact and knee flexion at foot contact 30 Excursion of internal tibial rotation (deg) 25 20 15 10 5 0 R = -0.60 0 20 40 60 Trunk forward inclination at foot contact (deg) Figure 3-3-4 Associations between trunk forward inclination at foot contact and excursion of internal tibial rotation

60 Knee flexion at foot contact (deg) 50 40 30 20 10 R = -0.49 0-20 -10 0 10 20 30 Excursion of trunk lateral inclination (deg) Figure 3-3-5 Associations between excursion of trunk lateral inclination and knee flexion at foot contact Excursion of internal tibial rotation (deg) 30 25 20 15 10 5 0 R = -0.48-40 -20 0 20 40 Trunk lateral inclination at foot contact (deg) Figure 3-3-6 Associations between trunk lateral inclination at foot contact and excursion of internal tibial rotation

4 ACL ACL ACL ACL Blackburn [134] Farrokhi [186] Farrokhi [186] ACL Olsen [15] ACL ACL

ACL Boden [12] ACL ACL 30 ACL [33, 41] ACL [28]Kanamori [32] ACL ACL [115, 116] Chappell [91] ACL ACL [4] ACL [4] ACL

() ACL ACL ACL Point Cluster Technique [170]

1 1 ACL

4

1 1 ACL ACL [107]ACL ACL [121] ACL [104, 115, 119] ACL [30, 31][29] ACL [147, 148, 152] ACL ACL [138, 139, 187] McLean [137]

McLean [137] [107, 131, 138]

2 28 (20.9±1.4 166.0±7.8cm58.8±7.7kg; ±) 16 12 6 (Figure 4-1-1) 5 (continuous jump test: ) 5 1 5 2 4 3

Figure 4-1-1 Continuous jump test All subjects performed five vertical jumps with maximum effort using both legs and landing.

24 10 6 6 (Hawk; Motion Analysis Corp., Santa Rosa, CA, USA) 200Hz 1000Hz PCT [170] 3 1.8cm () (30Hz; Sony Product, Japan) 3.8m (Dartfish software, Dartfish Japan Co., Ltd. Japan) (Figure 4-1-2)

Knee valgus angle Figure 4-1-2 Measurement of knee valgus using the 2D method The angle between the line formed from the marker on the ASIS to the mid point of the patella and that formed from the mid point of the patella to the midpoint of the ankle joint was recorded as the knee valgus angle.

y = a + b x y = a + b x + c x y = a + b ln(x) 2 3 LSD Coorevits [188] (1, 2) 5%

3 (1, 2) 0.73 8 20 (: r 2 =0.34, p<0.01; Figure 4-1-3A, : r 2 =0.40, p=0.01; Figure 4-1-3B, : r 2 =0.41, p<0.01; Figure 4-1-3C) (Figure 4-1-4)

r 2 r 2 r 2 Figure 4-1-3 Associations between 2D valgus and 3D knee abduction during the continuous jump test for the linear model (A), the quadratic model (B), and the logarithmic model (C) The R2 values of all models between 2D valgus and 3D knee abduction were significantly different from zero.

Figure 4-1-4 Associations between 2D valgus and 3D internal tibial rotation during the continuous jump test The R2 values of all models between 2D valgus and 3D internal tibial rotation were not significantly different from zero.

4 ACL ACL McLean [137]( ) McLean [137] McLean [137] ACL 7.036.766.60 ACL Hewett [107]ACL 7.6 ACL Hewett [107]ACL

9 ACL 35%30%30% 0%10%10% ACL ACL 10 15 15 25 4 ACL

ACL [29][30, 32] ACL ACL ACL

2 1 ACL ACL [12, 15, 16] ACL [107] ACL ACL ACL [143, 145, 147, 148] Plisky [189] ACL ACL ACL ACL Navicular drop [54, 56, 190](calcaneal angle) [54, 56]ACL Q ACL [191]

2 61 122 (19.4±1.2 169.1±6.6cm62.8±6.5kg; ± ) 5 (continuous jump test: )(Figure 4-2-1)() 5 1 5 2 4 3 90 12 1.8cm () (30 Hz; Panasonic Inc., Japan) 3.5m ( 55cm)(Figure 4-2-2) (Dartfish software, Dartfish Japan Co., Ltd. Japan) 4 1

Figure 4-2-1 Continuous jump test All subjects performed five vertical jumps with maximum effort using both legs and landing. Figure 4-2-2 Setting for continuous jump test The trial was recorded using digital video cameras from the frontal plane and sagittal plane. Each digital camera was placed 3.5 m distant from the landing point at the knee joint height.

Plisky [189]Star Excursion Balance Test (Figure 4-2-3) [192] ()3 3 3 ( )

Figure 4-2-3 Star Excursion Balance Test procedure While maintaining a single-leg stance, the player was asked to reach with the free limb in the anterior, posteromedial, and posterolateral directions in relation to the stance foot. The device comprises a footplate and three measure cords with a slider spreading to anterior, posteromedial, and posterolateral directions.

Q Navicular drop Leg heel Q Q [47] 90 (Figure 4-2-4)(Multi Level A-300; Shinwa Sokutei K.K., Japan) 1/3 (mid-point of hip rotation: MPR) MPR = ( IR ER) 2(deg) MPR

Figure 4-2-4 Measurement of hip rotation In the prone position with knee flexed 90 deg, the angle between the tibia and the vertical was measured using an inclinometer.

Denegar [193] 1/3 0 Navicular drop Navicular drop [194] Brody [52] (mm) Leg heel Leg heel Woodford-Rogers [54] 1/3 Leg heel ()() Pearson (F=2.0)

5%

3 6 8 59 114 5.5±2.2 47.2±7.7 r Table 4-2-1 Navicular drop (p < 0.05)(p < 0.05)MPRNavicular drop Leg heel (p < 0.01, p < 0.05, p < 0.01, p < 0.01, p < 0.05) Table 4-2-2 Navicular drop Navicular drop (p < 0.01) r 2 0.079 Table 4-2-3 Navicular drop Navicular drop (p < 0.01) r 2 0.290 (r = 0.340, 0.258, p < 0.01)

Table 4-2-1 Mean (SD) of lower limb alignment (deg or mm) and balance abilities (% leg length), and r values for the association with knee valgus angle and knee flexion angle Q-angle Hip IR Hip ER Mid point Ankle DF Navicular ROM ROM of rotation ROM drop Mean (SD) 20.1 (4.6) 49.9 (10.5) 33.5 (8.4) 8.2 (7.4) 34.5 (8.7) 5.7 (3.7) Knee valgus r -0.05 0.20* -0.03 0.16 0.06 0.19* Knee flex r -0.06 0.25** -0.05 0.21* 0.42** 0.29** LH-angle AT Bal. PM Bal. PL Bal. 5.2 (4.5) 72.6 (5.7) 110.1 (7.2) 108.1 (9.2) Composite Balance 96.9 (6.1) Mean (SD) Knee valgus r 0.05 0.06 0.07 0.04 0.07 Knee flex r 0.19* 0.35** 0.08 0.03 0.16 *: p<0.05, **: p<0.01 AT bal., anterior balance; PM bal., posteromedial balance; PL bal., posterolateral balance

Table 4-2-2 Results of step-wise regression model for peak knee valgus angle Model r r 2 Adj. r 2 SE of Est 1 0.205 0.042 0.033 2.195 2 0.281 0.079 0.063 2.162 Equation 1: Knee valgus = 0.043(IR ROM) + 3.042 Equation 2: Knee valgus = 0.044(IR ROM) + 0.116(ND) + 2.369 IR ROM, ROM of hip internal rotation; ND, navicular drop Table 4-2-3 Results of step-wise regression model for peak knee flexion angle Model r r 2 Adj. r 2 SE of Est 1 0.424 0.180 0.172 7.017 2 0.484 0.234 0.220 6.812 3 0.526 0.277 0.257 6.648 4 0.539 0.290 0.264 6.618 Equation 1: Knee flexion = 0.375(DF ROM) + 34.228 Equation 2: Knee flexion = 0.347(DF ROM) + 0.486(ND) + 32.453 Knee flexion = 0.282(DF ROM) + 0.456(ND) + 0.300(AT) Equation 3: + 13.056 Knee flexion = 0.261(DF ROM) + 0.471(ND) + 0.264(AT) Equation 4: + 0.089(IR ROM) + 11.889 DF ROM, ROM of ankle dorsiflexion; ND, navicular drop; AT, anterior balance; IR ROM, ROM of hip internal rotation

4 ACL [12, 15, 16] ACL [107] ACL ACL [12, 15, 16] ACL [28, 33, 41] ACL

[189] Navicular drop ACL ACL Cincinnati Sportsmetrics [145]PEP [148]Myklebust [147] ACL ACL ACL

ACL

5

1 ACL 1 ACL ACL ACL

2 ACL Pubmed ACLPrevention 251 (2007 5 ) ACL ACL [195-199]12 ACL 10

3 12 Henning ACL Henning [200]Henning Quad-cruciate interaction () ACL ACL ACL 1 3 2 ACL 0.33 / 0.25 / Henning ACL Vermont Vermont [142] ACL ACL ACL Phantom-foot 1 2 1) 2) 3) 4) 5)

20 ( 4700 )( 4000 ) ACL 2 ACL ACL 2 (26.6 / 10 /) Caraffa Caraffa [143] 5 3 20 3 ACL (20 300 ) 0.15 /season/team (20 300 ) 1.15 /season/team [143] Cincinnati Sportsmetrics Hewett [145] Cincinnati Sportsmetrics 6 3 6 2 Technique phasefundamentals phase Performance phasetechnique phase Fundamentals phase Performance phase ACL

ACL (463 ) 0.12 /1000Athlete exposure(ah)(366 ) 0.43 /1000AE 0.09 /1000AH [145] [154] ACL [138] Dynamic Neuromuscular Analysis (DNA) Hewett [152, 201, 202] Sportsmetrics Training Dynamic Neuromuscular Analysis program( DNA ) Ligament dominancequadriceps dominanceleg dominance 3 Ligament dominance ACL [154]31 wall-jumptuck-jumpbroad-jump and hold180jumpsingle-leg hop-and-hold Quadriceps dominance [101, 108]

ACL [80] 55 Quadriceps dominance squat-jump broad-jump and hold Leg dominance X-hop DNA ACL DNA ACL Hewett [161, 203]DNA 3 Soderman Soderman [144] 5 10 15 1 [144] ACL (: 4 : 1 )ACL (0.12/1000Play Hours (PH) 1.36/1000 PH, RR: 10.96) (62 ) Frappier Acceleration Training

Heidt [146]Frappier Acceleration Frappier Acceleration Trainng 7 (258 ) 33.7%(42 ) 14.3%ACL 3.0% 2.4% [146] Myklebust Myklebust [147] ACL 3 5 3 15 ACL ( 1 58 855 2 52 850 ) 2 [147] 3 1 2 ACL 0.09 /1000PH, 0.14 /1000PH ( (OR): 0.64) (OR: 0.37)

(OR: 0.06) [162] Prevent Injury, Enhance Performance (PEP) Mandelbaum [148] ACL Prevent Injury, Enhance Performance ( PEP)PEP 20 (without side to side movement) (soft landing) (opposed to landing with a flat foot) 14 18 3 2 ACL (1041/844 ) 0.09 /1000AH (1902/1913 : 00/01) 0.49 /1000AH ACL [148] Olsen Olsen[149] 20 (Knee over toe) (61 958 ) 6.9%(59 879 ) 13.1%(RR: 0.51)

3 (ACL 3 ) 14 (ACL 10 PCL 3 MCL 1 )(RR: 0.20) Petersen Petersen [150] Myklebust. [147] knee over toe 3 1 ACL ACL (134 ) 0.04/1000AH (142 ) 0.21/1000AH ACL (OR: 0.17) Knee Ligament Injnury Prevention (KLIP) Pfeiffer [151] Knee Ligament Injury Prevention ( KLIP) 4 Hewett [145]20 KLIP [159] ACL 2 ACL KLIP (577 ) 0.167/1000exposure(862 ) 0.078/1000exposure (OR: 2.05)[151]

4 ACL 12 ACL 10 ACL Table 5-1-1 10

Table 5-1-1 Details and effects of the 10 ACL prevention programs Year Author Sports Strength Flexibility Agility Jump Balance Feedback 1995 Ettlinger et al. Ski 1996 Caraffa et al. 1999 Hewett et al. 2000 Soderman et al. 2000 Heidt et al. 2003 Myklebust et al. 2005 Mandelbaum et al. Male soccer Female basketball, volleyball, soccer Female soccer Female soccer Female handball Female soccer PNF) treadmill 2005 Olsen et al. Handball Effects (control vs intervention) 26.6 vs 10/season a 1.15 vs 0.15/team/season 0.43 vs 0.12/1000AE b 1 vs 4 injuries (ACL) 0.12 vs 1.36/1000PH cd 3.0% vs 2.4% 0.14 vs 0.09/1000PH d (OR e : 0.64), (OR e : 0.37) f 0.49 vs 0.09/1000AE (RR g : 0.18) 14 vs 3 injuries RR g : 0.20 h a 2005 Petersen et al. 2006 Pfeiffer et al. Female handball Female basketball, volleyball, soccer 0.078 vs 0.167/1000AE b (OR e : 2.05) vs past 2 years b AE: Athlete Exposure c Severe knee injury d PH: Play Hour e OR: Odds Ratio f in top league g RR: Rerative Risk Including 3 PCL injuries and 1 MCL injury in control h 0.21 vs 0.04/1000AE b (OR e : 0.17)

ACL (Feedback) 6 ACL 1990 Ettlinger [142] Caraffa [143] Soderman [144] Hewett [145] [146-151] 7 [145-151] Heidt [146] 6 ACL [12]ACL 7 5 7 3 Hewett [145]

7 4 Mandelbaum [148] Olsen [149] ACL 7 3 10 ACL 3 [145, 147, 151]Hewett [145] [154]Myklebust [147] 1 35 [162]Pfeiffer [151] [159] ACL

Randomized control trial ( RCT) (Prospective cohort study: PCS) 10 RCT Olsen [149] Soderman [144] 2 Olsen [149]RCT Soderman [144] PCS [142, 143, 145, 146][142, 143, 145, 148] [146, 150] ACL Olsen [149] RCT Olsen [149] PCS [145, 147, 148, 150] Caraffa [143]Soderman [144] [147, 149, 150] Heidt [146]Pfeiffer [151]ACL

ACL ACL 12 10 ACL ACL

2 1 ACL ACL 1 [204] [205] ACL ACL ACL [145, 147-151] ACL [145, 147-150] ACL ACL [122, 156, 160, 206] [156, 160][160][206] Myer [160] [122, 156] ()() ACL ACL [15] [153, 155, 156] [153, 155, 156]

DeMorat [207] ACL Colby [87] ACL ACL ACL

2 8 (19.4±0.7 169.5±4.9cm64.1±7.8kg; ±) 6 3 1 ( 3 1 ) 3 1 (Pre-tarining1)5 2 (Pre-training2) 2 5 1 3 (Post-training) 3 1 ( 3 1 ) 1 20 3 5 [147, 154, 201, 202](Table 5-2-1) 5 3 3 (1) (2) (3) 2

Table 5-2-1 Jump and balance training Exercise Time or Repetitions Exercise Time or Repetitions Phase1: Technique Phase2 :Performance 1. Squat jumps 20sec 1. Squat jumps 20sec 2. 180 jumps 20sec 2. Scissors jumps 20sec 3. Single leg balance 20sec 3. Single leg balance and pass 20sec 4. Hop jump (both leg) 20sec 4. Hop jump (single leg) 20sec 5. Broad jump and hold 28m 5. Single-leg hop and hold 14m/leg 6. Crossover hop, hop, hop, stick 28m 6. Crossover hop, hop, hop, stick 28m Squat jumps: Drop into deep knee, hip, and ankle flexion and then take off into a maximal vertical jump. On landing, immediately return to the starting position and repeat the initial jump. 180 jumps : Initiates a 2-footed jump with a direct vertical motion combined with a 180 rotation in midair, keeping arms away from the body to help maintain balance. When landing, immediately reverses this jump to the opposite direction. Single-leg balance (and pass): This drill is performed on a balance device that provides an unstable surface. Begin by stanging on one foot on the device. After the subject has improved, the training drills can incorporate ball catches and passes. Hop jumps: Start by standing next to a small square balance board. Hop onto the board and then hop off on the opposite side. Repeat hopping on and off the board. Broad jump and hold: Begin by swinging arms forward and jumping horizontally and vertically at approximately a 45 angle to achieve a maximum horizontal distance. The athlete lands with her knees flexed to approximately 90. Crossover hop, hop, hop, stick: Start on a single limb and jump at a diagonal across the body landing on the opposite limb with the foot pointing straight ahead and immediately redirect the jump in the opposite diagonal direction. Scissors jumps: Start in a stride position with one foot well in front of other. Jump up, alternating foot positions in midair. Single-leg hop and hold: Initiate the jump by swinging the arms forward while simultaneously extending at the hips and knees. The jump should carry the athlete up at an angle of approximately 45 and attain maximal distance for a single-leg landing. The subject is instructed to land on the jumping leg in deep knee flexion.

3 1 ( 3 1 ) 50ms 50ms (%MVC)(Hamstrings Quadriceps Ratio: HQR) 3 Bonferroni Friedman Wilcoxon Pre-training1 Pre-training2 Pre-training2 Post-training 5%

3 60ms Figure 5-2-1 3 1 Table 5-2-2 Pre-training2 Post-training (p<0.01) Pre-training1 Pre-training2 Pre-training2 Post-training (p<0.01, p<0.05) Table 5-2-3 Pre-training2 Post-training (p<0.001) Table 5-2-2 Mean (SD) of knee position at foot contact Position at foot contact Flexion (deg) Adduction (deg) External tibial rot. (deg) Ant. translation (mm) Pre-training1 19.5 (7.3) 1.3 (2.7) 1.9 (5.3) 0.9 (5.5) Pre-training2 19.3 (7.0) 0.1 (3.3) 0.6 (7.1) 5.0 (3.9) ** ** Post-training 24.4 (5.9) 0.6 (3.2) 1.1 (5.7) 1.6 (5.0) * *: p < 0.05, **: p < 0.01 Table 5-2-3 Mean (SD) of knee motion during at landing Degree or displacement during the landing Flexion (deg) Adduction (deg) Abduction (deg) Internal tibial rot. (deg) Ant. translation (mm) Pre-training1 31.6 (7.3) 1.5 (1.0) 2.8 (2.0) 12.3 (3.8) 9.4 (3.2) Pre-training2 34.3 (7.1) 1.3 (0.8) 3.7 (2.0) 13.8 (5.1) 9.2 (4.2) Post-training 40.3 (5.4) *** 1.3 (1.1) 4.1 (1.7) 13.3 (5.6) 9.1 (3.6) ***: p < 0.001

Figure 5-2-1 Mean joint motion during the single limb drop landing for pre-training 1, pre-training 2, and post-training. Data are presented for knee flexion (a), internal tibial rotation (b), knee valgus (c) and anterior tibial translation (d).

Figure 5-2-2HQR Figure 5-2-3 50ms Pre-training2 Post-training (p<0.05, Figure 5-2-2a) 50ms (Figure 5-2-2b)HQR 50ms 50ms (Figure 5-2-3) Figure 5-2-2 %MVC of the rectus femoris (RF) and the hamstrings (Ham) for the 50ms before foot contact (a), and for the 50ms after foot contact (b) Boxes denote the middle 50% of the range and the median. The whiskers show the extent of the rest of the data. * p < 0.05 from the previous test

Figure 5-2-3 Ham/Quad-ratio (HQR) before foot contact (a), and after foot contact (b) Boxes denote the middle 50% of the range and the median. The whiskers show the extent of the rest of data.

4 ACL ACL [145, 147-150] ACL (Figure 5-2-1) [156, 160, 206][122, 156] [160]ACL ACL ACL [12, 15, 16] ACL

[30, 32] ACL ACL ACL ACL ACL ACL Onate [206] ACL 50 70 [208] [178, 179, 209, 210] (Pre activation)[153, 155]

(electromechanical delay) 50ms [172] [210] [211, 212] [173, 213] ACL ACL ACL 30 ACL [28, 33, 41] [33, 214] 60 ACL [41][177] [179] ACL ACL 3 1 5

ACL

6

ACL 4 [1] 4 2 ACL ACL ACL ACL ACL ACL ACL ACL 3 ACL Bahr [215] ACL ACL ACL ACL ACL

3 1 PCT ACL ACL 2 - ACL - ACL ACL ACL 3 ACL ACL 3 ACL 4 4 ACL ACL

ACL 4 1 ACL 2 ACL ACL 5 ACL ACL 1 ACL ACL ACL 2 1 ACL 3 ACL () ACL ACL

ACL ACL ACL ACL ACL ACL ACL ACL [216, 217] ACL 3 ACL 5 ACL 4

7

ACL ACL ACL ACL ACL ACL ACL - ACL ACL ACL ACL

ACL ACL ACL

1 Injury Report Form

Exposure Sheet

2 Point Cluster Technique PCT Andriacchi [170] PCT PCT I (( p i, y ) 2 + ( p i,z ) 2 ) m i p i,x p i, y ( m i ) p i,z p i,x ( m i ) i i i I = p i,x p i, y ( m i ) (( p i,z ) 2 + ( p i,x ) 2 ) m i p i, y p i,z ( m i ) i i i p i,z p i,x ( m i ) p i, y p i,z ( m i ) (( p i,x ) 2 + ( p i, y ) 2 ) m i i i i (1) p i i m i 3 3 R R = ( E 1, E 2, E 3 ) (2) E j j E j = ( e j,x,e j, y,e j,z ) T (3) PCT (2) R (2) R Grood [98] ()( )

1 van Mechelen W, Hlobil H, Kemper HC: Incidence, severity, aetiology and prevention of sports injuries. A review of concepts. Sports Med 14:82-99, 1992. 2 Miyasaka KC, Daniel DM, Stone ML: The incidence of knee ligament injuries in the general population. Am J Knee Surg 4:3-8, 1991. 3 Griffin LY, Agel J, Albohm MJ, Arendt EA, Dick RW, Garrett WE, Garrick JG, Hewett TE, Huston L, Ireland ML, Johnson RJ, Kibler WB, Lephart S, Lewis JL, Lindenfeld TN, Mandelbaum BR, Marchak P, Teitz CC, Wojtys EM: Noncontact anterior cruciate ligament injuries: risk factors and prevention strategies. J Am Acad Orthop Surg 8:141-50, 2000. 4 Agel J, Arendt EA, Bershadsky B: Anterior cruciate ligament injury in national collegiate athletic association basketball and soccer: a 13-year review. Am J Sports Med 33:524-30, 2005. 5 Arendt E, Dick R: Knee injury patterns among men and women in collegiate basketball and soccer. NCAA data and review of literature. Am J Sports Med 23:694-701, 1995. 6 Arendt EA: Anterior cruciate ligament injury patterns among collegiate men and women. J Athl Train 34:86-92, 1999. 7 Myklebust G, Maehlum S, Holm I, Bahr R: A prospective cohort study of anterior cruciate ligament injuries in elite Norwegian team handball. Scand J Med Sci Sports 8:149-53, 1998. 8 Deitch JR, Starkey C, Walters SL, Moseley JB: Injury risk in professional basketball players: a comparison of Women's National Basketball Association and National Basketball Association athletes. Am J Sports Med 34:1077-83, 2006. 9 Mihata LC, Beutler AI, Boden BP: Comparing the incidence of anterior cruciate ligament injury in collegiate lacrosse, soccer, and basketball players: implications for anterior cruciate ligament mechanism and prevention. Am J Sports Med 34:899-904, 2006. 10 Messina DF, Farney WC, DeLee JC: The incidence of injury in Texas high school basketball. A prospective study among male and female athletes. Am J Sports Med 27:294-9, 1999.

11 Huston LJ, Greenfield ML, Wojtys EM: Anterior cruciate ligament injuries in the female athlete. Potential risk factors. Clin Orthop 50-63, 2000. 12 Boden BP, Dean GS, Feagin JA, Jr., Garrett WE, Jr.: Mechanisms of anterior cruciate ligament injury. Orthopedics 23:573-8, 2000. 13 Ireland ML: The female ACL: why is it more prone to injury? Orthop Clin North Am 33:637-51, 2002. 14 McNair PJ, Marshall RN, Matheson JA: Important features associated with acute anterior cruciate ligament injury. N Z Med J 103:537-9, 1990. 15 Olsen OE, Myklebust G, Engebretsen L, Bahr R: Injury mechanisms for anterior cruciate ligament injuries in team handball: a systematic video analysis. Am J Sports Med 32:1002-12, 2004. 16 Teitz CC. Video analysis of ACL injuries. In: Griffin LY, ed. Prevention of noncontact ACL injuries. Rosemont, IL: American Academy of Orthopaedic Surgeons 87-92, 2001. 17 Krosshaug T, Nakamae A, Boden BP, Engebretsen L, Smith G, Slauterbeck JR, Hewett TE, Bahr R: Mechanisms of anterior cruciate ligament injury in basketball: video analysis of 39 cases. Am J Sports Med 35:359-67, 2007. 18 Krosshaug T, Nakamae A, Boden B, Engebretsen L, Smith G, Slauterbeck J, Hewett TE, Bahr R: Estimating 3D joint kinematics from video sequences of running and cutting maneuvers-assessing the accuracy of simple visual inspection. Gait Posture 26:378-85, 2007. 19 Krosshaug T, Slauterbeck JR, Engebretsen L, Bahr R: Biomechanical analysis of anterior cruciate ligament injury mechanisms: three-dimensional motion reconstruction from video sequences. Scand J Med Sci Sports 2006. 20 Mink JH, Deutsch AL: Occult cartilage and bone injuries of the knee: detection, classification, and assessment with MR imaging. Radiology 170:823-9, 1989. 21 Rosen MA, Jackson DW, Berger PE: Occult osseous lesions documented by magnetic resonance imaging associated with anterior cruciate ligament ruptures. Arthroscopy 7:45-51, 1991.

22 Graf BK, Cook DA, De Smet AA, Keene JS: "Bone bruises" on magnetic resonance imaging evaluation of anterior cruciate ligament injuries. Am J Sports Med 21:220-3, 1993. 23 Kaplan PA, Gehl RH, Dussault RG, Anderson MW, Diduch DR: Bone contusions of the posterior lip of the medial tibial plateau (contrecoup injury) and associated internal derangements of the knee at MR imaging. Radiology 211:747-53, 1999. 24 Viskontas DG, Giuffre BM, Duggal N, Graham D, Parker D, Coolican M: Bone bruises associated with ACL rupture: correlation with injury mechanism. The American journal of sports medicine 36:927-33, 2008. 25 Cipolla M, Scala A, Gianni E, Puddu G: Different patterns of meniscal tears in acute anterior cruciate ligament (ACL) ruptures and in chronic ACL-deficient knees. Classification, staging and timing of treatment. Knee Surg Sports Traumatol Arthrosc 3:130-4, 1995. 26 Bellabarba C, Bush-Joseph CA, Bach BR, Jr.: Patterns of meniscal injury in the anterior cruciate-deficient knee: a review of the literature. Am J Orthop 26:18-23, 1997. 27 Nishimori M, Deie M, Adachi N, Kanaya A, Nakamae A, Motoyama M, Ochi M: Articular cartilage injury of the posterior lateral tibial plateau associated with acute anterior cruciate ligament injury. Knee Surg Sports Traumatol Arthrosc 16:270-4, 2008. 28 Arms SW, Pope MH, Johnson RJ, Fischer RA, Arvidsson I, Eriksson E: The biomechanics of anterior cruciate ligament rehabilitation and reconstruction. Am J Sports Med 12:8-18, 1984. 29 Berns GS, Hull ML, Patterson HA: Strain in the anteromedial bundle of the anterior cruciate ligament under combination loading. J Orthop Res 10:167-76, 1992. 30 Markolf KL, Burchfield DM, Shapiro MM, Shepard MF, Finerman GA, Slauterbeck JL: Combined knee loading states that generate high anterior cruciate ligament forces. J Orthop Res 13:930-5, 1995. 31 Kanamori A, Woo SL, Ma CB, Zeminski J, Rudy TW, Li G, Livesay GA: The forces in the anterior cruciate ligament and knee kinematics during a simulated pivot shift test: A human cadaveric study using robotic technology. Arthroscopy 16:633-9, 2000.

32 Kanamori A, Zeminski J, Rudy TW, Li G, Fu FH, Woo SL: The effect of axial tibial torque on the function of the anterior cruciate ligament: a biomechanical study of a simulated pivot shift test. Arthroscopy 18:394-8, 2002. 33 Renstrom P, Arms SW, Stanwyck TS, Johnson RJ, Pope MH: Strain within the anterior cruciate ligament during hamstring and quadriceps activity. Am J Sports Med 14:83-7, 1986. 34 Durselen L, Claes L, Kiefer H: The influence of muscle forces and external loads on cruciate ligament strain. Am J Sports Med 23:129-36, 1995. 35 Li G, Rudy TW, Sakane M, Kanamori A, Ma CB, Woo SL: The importance of quadriceps and hamstring muscle loading on knee kinematics and in-situ forces in the ACL. J Biomech 32:395-400, 1999. 36 Withrow TJ, Huston LJ, Wojtys EM, Ashton-Miller JA: The relationship between quadriceps muscle force, knee flexion, and anterior cruciate ligament strain in an in vitro simulated jump landing. Am J Sports Med 34:269-74, 2006. 37 Withrow TJ, Huston LJ, Wojtys EM, Ashton-Miller JA: Effect of varying hamstring tension on anterior cruciate ligament strain during in vitro impulsive knee flexion and compression loading. J Bone Joint Surg Am 90:815-23, 2008. 38 Withrow TJ, Huston LJ, Wojtys EM, Ashton-Miller JA: The effect of an impulsive knee valgus moment on in vitro relative ACL strain during a simulated jump landing. Clin Biomech (Bristol, Avon) 21:977-83, 2006. 39 Weinhold PS, Stewart JD, Liu HY, Lin CF, Garrett WE, Yu B: The influence of gender-specific loading patterns of the stop-jump task on anterior cruciate ligament strain. Injury 2007. 40 Henning CE, Lynch MA, Glick KR, Jr.: An in vivo strain gage study of elongation of the anterior cruciate ligament. Am J Sports Med 13:22-6, 1985. 41 Beynnon BD, Fleming BC, Johnson RJ, Nichols CE, Renstrom PA, Pope MH: Anterior cruciate ligament strain behavior during rehabilitation exercises in vivo. Am J Sports Med 23:24-34, 1995. 42 Fleming BC, Renstrom PA, Beynnon BD, Engstrom B, Peura GD, Badger GJ, Johnson RJ: The

effect of weightbearing and external loading on anterior cruciate ligament strain. J Biomech 34:163-70, 2001. 43 Fleming BC, Ohlen G, Renstrom PA, Peura GD, Beynnon BD, Badger GJ: The effects of compressive load and knee joint torque on peak anterior cruciate ligament strains. Am J Sports Med 31:701-7, 2003. 44 Heijne A, Fleming BC, Renstrom PA, Peura GD, Beynnon BD, Werner S: Strain on the anterior cruciate ligament during closed kinetic chain exercises. Med Sci Sports Exerc 36:935-41, 2004. 45 Cerulli G, Benoit DL, Lamontagne M, Caraffa A, Liti A: In vivo anterior cruciate ligament strain behaviour during a rapid deceleration movement: case report. Knee Surg Sports Traumatol Arthrosc 11:307-11, 2003. 46 Li G, Defrate LE, Rubash HE, Gill TJ: In vivo kinematics of the ACL during weight-bearing knee flexion. J Orthop Res 23:340-4, 2005. 47 Livingston LA: The quadriceps angle: a review of the literature. J Orthop Sports Phys Ther 28:105-9, 1998. 48 Horton MG, Hall TL: Quadriceps femoris muscle angle: normal values and relationships with gender and selected skeletal measures. Phys Ther 69:897-901, 1989. 49 Woodland LH, Francis RS: Parameters and comparisons of the quadriceps angle of college-aged men and women in the supine and standing positions. Am J Sports Med 20:208-11, 1992. 50 Nguyen AD, Shultz SJ: Sex differences in clinical measures of lower extremity alignment. J Orthop Sports Phys Ther 37:389-98, 2007. 51 Pantano KJ, White SC, Gilchrist LA, Leddy J: Differences in peak knee valgus angles between individuals with high and low Q-angles during a single limb squat. Clin Biomech (Bristol, Avon) 20:966-72, 2005. 52 Brody DM: Techniques in the evaluation and treatment of the injured runner. Orthop Clin North Am 13:541-58, 1982. 53 Beckett ME: Incidence of hyperpronation in the ACL injured knee: A clinical perspective. J Athl

Train 27:58-62, 1992. 54 Woodford-Rogers B, Cyphert L, Denegar CR: Risk Factors for Anterior Cruciate Ligament Injury in High School and College Athletes. J Athl Train 29:343-6, 1994. 55 Allen MK, Glasoe WM: Metrecom Measurement of Navicular Drop in Subjects with Anterior Cruciate Ligament Injury. J Athl Train 35:403-6, 2000. 56 Smith J, Szczerba JE, Arnold BL, Perrin DH, Martin DE: Role of Hyperpronation as a Possible Risk Factor for Anterior Cruciate Ligament Injuries. J Athl Train 32:25-8, 1997. 57 Yoshioka Y, Cooke TD: Femoral anteversion: assessment based on function axes. J Orthop Res 5:86-91, 1987. 58 Braten M, Terjesen T, Rossvoll I: Femoral anteversion in normal adults. Ultrasound measurements in 50 men and 50 women. Acta orthopaedica Scandinavica 63:29-32, 1992. 59 Dejour H, Bonnin M: Tibial translation after anterior cruciate ligament rupture. Two radiological tests compared. J Bone Joint Surg Br 76:745-9, 1994. 60 Meister K, Talley MC, Horodyski MB, Indelicato PA, Hartzel JS, Batts J: Caudal slope of the tibia and its relationship to noncontact injuries to the ACL. Am J Knee Surg 11:217-9, 1998. 61 Brandon ML, Haynes PT, Bonamo JR, Flynn MI, Barrett GR, Sherman MF: The association between posterior-inferior tibial slope and anterior cruciate ligament insufficiency. Arthroscopy 22:894-9, 2006. 62 Stijak L, Herzog RF, Schai P: Is there an influence of the tibial slope of the lateral condyle on the ACL lesion? A case-control study. Knee Surg Sports Traumatol Arthrosc 16:112-7, 2008. 63 Anderson AF, Dome DC, Gautam S, Awh MH, Rennirt GW: Correlation of anthropometric measurements, strength, anterior cruciate ligament size, and intercondylar notch characteristics to sex differences in anterior cruciate ligament tear rates. Am J Sports Med 29:58-66, 2001. 64 Charlton WP, St John TA, Ciccotti MG, Harrison N, Schweitzer M: Differences in femoral notch anatomy between men and women: a magnetic resonance imaging study. Am J Sports Med 30:329-33, 2002.

65 Davis TJ, Shelbourne KD, Klootwyk TE: Correlation of the intercondylar notch width of the femur to the width of the anterior and posterior cruciate ligaments. Knee Surg Sports Traumatol Arthrosc 7:209-14, 1999. 66 Shelbourne KD, Facibene WA, Hunt JJ: Radiographic and intraoperative intercondylar notch width measurements in men and women with unilateral and bilateral anterior cruciate ligament tears. Knee Surg Sports Traumatol Arthrosc 5:229-33, 1997. 67 Shelbourne KD, Davis TJ, Klootwyk TE: The relationship between intercondylar notch width of the femur and the incidence of anterior cruciate ligament tears. A prospective study. Am J Sports Med 26:402-8, 1998. 68 Souryal TO, Moore HA, Evans JP: Bilaterality in anterior cruciate ligament injuries: associated intercondylar notch stenosis. Am J Sports Med 16:449-54, 1988. 69 Anderson AF, Lipscomb AB, Liudahl KJ, Addlestone RB: Analysis of the intercondylar notch by computed tomography. Am J Sports Med 15:547-52, 1987. 70 LaPrade RF, Burnett QM, 2nd: Femoral intercondylar notch stenosis and correlation to anterior cruciate ligament injuries. A prospective study. Am J Sports Med 22:198-202; discussion 3, 1994. 71 Uhorchak JM, Scoville CR, Williams GN, Arciero RA, St Pierre P, Taylor DC: Risk factors associated with noncontact injury of the anterior cruciate ligament: a prospective four-year evaluation of 859 West Point cadets. Am J Sports Med 31:831-42, 2003. 72 Souryal TO, Freeman TR: Intercondylar notch size and anterior cruciate ligament injuries in athletes. A prospective study. Am J Sports Med 21:535-9, 1993. 73 Teitz CC, Lind BK, Sacks BM: Symmetry of the femoral notch width index. Am J Sports Med 25:687-90, 1997. 74 Schickendantz MS, Weiker GG: The predictive value of radiographs in the evaluation of unilateral and bilateral anterior cruciate ligament injuries. Am J Sports Med 21:110-3, 1993. 75 Jansson A, Saartok T, Werner S, Renstrom P: General joint laxity in 1845 Swedish school children

of different ages: age- and gender-specific distributions. Acta Paediatr 93:1202-6, 2004. 76 Rozzi SL, Lephart SM, Gear WS, Fu FH: Knee joint laxity and neuromuscular characteristics of male and female soccer and basketball players. Am J Sports Med 27:312-9, 1999. 77 Ramesh R, Von Arx O, Azzopardi T, Schranz PJ: The risk of anterior cruciate ligament rupture with generalised joint laxity. J Bone Joint Surg Br 87:800-3, 2005. 78 Myer GD, Ford KR, Paterno MV, Nick TG, Hewett TE: The Effects of Generalized Joint Laxity on Risk of Anterior Cruciate Ligament Injury in Young Female Athletes. The American journal of sports medicine 2008. 79 Shultz SJ, Shimokochi Y, Nguyen AD, Schmitz RJ, Beynnon BD, Perrin DH: Measurement of varus-valgus and internal-external rotational knee laxities in vivo--part II: relationship with anterior-posterior and general joint laxity in males and females. J Orthop Res 25:989-96, 2007. 80 Huston LJ, Wojtys EM: Neuromuscular performance characteristics in elite female athletes. Am J Sports Med 24:427-36, 1996. 81 Chu D, LeBlanc R, D'Ambrosia P, D'Ambrosia R, Baratta RV, Solomonow M: Neuromuscular disorder in response to anterior cruciate ligament creep. Clinical Biomechanics 18:222-30, 2003. 82 Dyhre-Poulsen P, Krogsgaard MR: Muscular reflexes elicited by electrical stimulation of the anterior cruciate ligament in humans. J Appl Physiol 89:2191-5, 2000. 83 Markolf KL, Graff-Radford A, Amstutz HC: In vivo knee stability. A quantitative assessment using an instrumented clinical testing apparatus. J Bone Joint Surg Am 60:664-74, 1978. 84 Lloyd DG, Buchanan TS: Strategies of muscular support of varus and valgus isometric loads at the human knee. J Biomech 34:1257-67, 2001. 85 Wojtys EM, Ashton-Miller JA, Huston LJ: A gender-related difference in the contribution of the knee musculature to sagittal-plane shear stiffness in subjects with similar knee laxity. J Bone Joint Surg Am 84-A:10-6, 2002. 86 Wojtys EM, Huston LJ, Schock HJ, Boylan JP, Ashton-Miller JA: Gender differences in muscular

protection of the knee in torsion in size-matched athletes. J Bone Joint Surg Am 85-A:782-9, 2003. 87 Colby S, Francisco A, Yu B, Kirkendall D, Finch M, Garrett W, Jr.: Electromyographic and kinematic analysis of cutting maneuvers. Implications for anterior cruciate ligament injury. Am J Sports Med 28:234-40, 2000. 88 Fagenbaum R, Darling WG: Jump landing strategies in male and female college athletes and the implications of such strategies for anterior cruciate ligament injury. Am J Sports Med 31:233-40, 2003. 89 Cowling EJ, Steele JR: Is lower limb muscle synchrony during landing affected by gender? Implications for variations in ACL injury rates. J Electromyogr Kinesiol 11:263-8, 2001. 90 Sell TC, Ferris CM, Abt JP, Tsai YS, Myers JB, Fu FH, Lephart SM: The effect of direction and reaction on the neuromuscular and biomechanical characteristics of the knee during tasks that simulate the noncontact anterior cruciate ligament injury mechanism. Am J Sports Med 34:43-54, 2006. 91 Chappell JD, Creighton RA, Giuliani C, Yu B, Garrett WE: Kinematics and electromyography of landing preparation in vertical stop-jump: risks for noncontact anterior cruciate ligament injury. Am J Sports Med 35:235-41, 2007. 92 Sell TC, Ferris CM, Abt JP, Tsai YS, Myers JB, Fu FH, Lephart SM: Predictors of proximal tibia anterior shear force during a vertical stop-jump. J Orthop Res 25:1589-97, 2007. 93 Sigward SM, Powers CM: The influence of gender on knee kinematics, kinetics and muscle activation patterns during side-step cutting. Clin Biomech (Bristol, Avon) 21:41-8, 2006. 94 Landry SC, McKean KA, Hubley-Kozey CL, Stanish WD, Deluzio KJ: Neuromuscular and lower limb biomechanical differences exist between male and female elite adolescent soccer players during an unanticipated side-cut maneuver. Am J Sports Med 35:1888-900, 2007. 95 Landry SC, McKean KA, Hubley-Kozey CL, Stanish WD, Deluzio KJ: Neuromuscular and lower limb biomechanical differences exist between male and female elite adolescent soccer players during an unanticipated run and crosscut maneuver. Am J Sports Med 35:1901-11, 2007. 96 Kellis E, Kouvelioti V: Agonist versus antagonist muscle fatigue effects on thigh muscle activity