1.eps



Similar documents
DATA test; /** **/ INPUT score DATALINES; ; PROC MEANS DATA=test; /** DATA= **/ VAR sc


DATA Sample1 /**/ INPUT Price /* */ DATALINES



ODS GRAPHICS ON; ODS GRAPHICS ON; PROC TTEST DATA=SASHELP.CLASS SIDE=2 DIST=NORMAL H0=58 PLOTS(ONLY SHOWH0)=(SUMMARY); VAR HEIGHT;

technews2012autumn

001


PROC PWENCODE IN=sastrust1 ; RUN ;


: (EQS) /EQUATIONS V1 = 30*V F1 + E1; V2 = 25*V *F1 + E2; V3 = 16*V *F1 + E3; V4 = 10*V F2 + E4; V5 = 19*V99

libref libref libref

Exam : A JPN Title : SAS Base Programming for SAS 9 Vendor : SASInstitute Version : DEMO Get Latest & Valid A JPN Exam's Question and Answ

データ構造の作成 一時 SAS データセットと永久 SAS データセットの作成 テキストファイルから SAS データセットを作成するための DATA ステップの使用例 : Data NewData; Infile "path.rawdata"; Input <pointer-control> var

Presentation Title Goes Here

SAS(Statistical Analysis System)とは

Łñ“’‘‚2004

プリント


スライド 1

●70974_100_AC009160_KAPヘ<3099>ーシス自動車約款(11.10).indb

改訂版 :基本的な文字化の原則(Basic Transcription System for Japanese: BTSJ)

Lecture on

REALV5_A4…p_Ł\1_4A_OCF

untitled

「都市から地方への人材誘致・移住促進に関する調査」

<91498EE88CA D815B2E786C73>

〔 大 会 役 員 〕

橡本体資料+参考条文.PDF

Proc luaを初めて使ってみた -SASでの処理を条件に応じて変える- 淺井友紀 ( エイツーヘルスケア株式会社 ) I tried PROC LUA for the first time Tomoki Asai A2 Healthcare Corporation

!!! 2!

p...{..P01-48(TF)

¥¤¥ó¥¿¡¼¥Í¥Ã¥È·×¬¤È¥Ç¡¼¥¿²òÀÏ Âè2²ó

SAS Web XML * ** * ** Web Data Analysis with SAS Input and Output of XML Data and Application to Real Estate Valuation Map Junnosuke Matsushima*, Hiro

Z...QXD (Page 1)

卒業論文

d-00


Gray [6] cross tabulation CUBE, ROLL UP Johnson [7] pivoting SQL 3. SuperSQL SuperSQL SuperSQL SQL [1] [2] SQL SELECT GENERATE <media> <TFE> GENER- AT

Slide 1

EP760取扱説明書

Microsoft PowerPoint - 【配布・WEB公開用】SAS発表資料.pptx

Stata11 whitepapers mwp-037 regress - regress regress. regress mpg weight foreign Source SS df MS Number of obs = 74 F(

要旨 : SAS9.4 より Output Derivery System( 以下 ODS) に追加された Report Writing Interface( 以下 RWI) を使用して HTML 形式のレポート作成の実用性と可能性について検討する なお HTML 出力には タグの綺麗さから ODS

Studies of Foot Form for Footwear Design (Part 9) : Characteristics of the Foot Form of Young and Elder Women Based on their Sizes of Ball Joint Girth


,, Poisson 3 3. t t y,, y n Nµ, σ 2 y i µ + ɛ i ɛ i N0, σ 2 E[y i ] µ * i y i x i y i α + βx i + ɛ i ɛ i N0, σ 2, α, β *3 y i E[y i ] α + βx i

Taro13-芦北(改).jtd


3 4 2

Taro13-宇城(改).jtd

1 I EViews View Proc Freeze

こんにちは由美子です

Stata 11 Stata ROC whitepaper mwp anova/oneway 3 mwp-042 kwallis Kruskal Wallis 28 mwp-045 ranksum/median / 31 mwp-047 roctab/roccomp ROC 34 mwp-050 s

程蘊(ていうん).indd

output2010本文.indd

レジャー産業と顧客満足の課題

untitled

2009 Web B012-1

こんにちは由美子です


平成14年10月3日(日)

講義のーと : データ解析のための統計モデリング. 第3回

technews2012autumn

富士ゼロックス Print Server N01 Ver.6.0 リリースについての追加補足情報

要旨 : Ver.9.4 で ODS 機能と REPORT プロシジャを用いて解析帳票を作成する 法を整理した 私と同様にこれから業務で利用を開始する を対象に紹介する キーワード :ODS RTF REPORT プロシジャ スタイル要素 スタイル属性 インラインフォーマット 2


% 10%, 35%( 1029 ) p (a) 1 p 95% (b) 1 Std. Err. (c) p 40% 5% (d) p 1: STATA (1). prtesti One-sample test of pr

init: /**/ call notify(., _get_widget_, graph1, graphid); return; graph1: /**/ title1=getnitemc(graphid, title1 ); /**/ call display( title.frame, tit


1

リファレンス

Transcription:

PROC SORT DATA=SortData OUT=OutData NOEQUALS; BY DESCENDING group; /* group*/

/* */ DATA MeansData1; INPUT x y; DATALINES; 2 5 4 6 1 9 3 12 ; /* MEANS */ PROC MEANS DATA=MeansData1 MEAN MEDIAN SUM; VAR x y;

/* OUTPUTMEANS*/ PROC MEANS DATA=MeansData2 NOPRINT; CLASS group1 group2; VAR x y z; OUTPUT OUT=MeansOut1 MAX=Max_x Max_y Max_z; /* */ DATA MeansData2; DO i=1 to 100; DO group1=1 TO 2; DO group2=a, b, c; x=group1*10+rannor(123); y=(group2=a)*5+(group2=b)*10+rannor(123); z=group1*5+rannor(123); OUTPUT; END; END; END; DROP i; /* */ PROC PRINT DATA=MeansData2(OBS=10); /* CLASSMEANS */ PROC MEANS DATA=MeansData2; CLASS group1 group2; /* */ VAR x y z; PROC UNIVARIATE DATA=UnivariateData1; VAR x y z; PROC UNIVARIATE DATA=UnivariateData1 WINSORIZED=0.2 ROBUSTSCALE; VAR x y z;

/* UNIVARIATEPROBPLOT*/ PROC UNIVARIATE DATA=UnivariateData2; PROBPLOT x / NORMAL(MU=EST SIGMA=EST COLOR=GRAY99 L=3 W=4) FONT=Arial HEIGHT=4; /* */ DATA UnivariateData2; DO i=1 TO 200; x=rannor(123)*3+10; OUTPUT; END; DROP i; /* UNIVARIATEHISTGRAM*/ PROC UNIVARIATE DATA=UnivariateData2; HISTOGRAM x / NORMAL(W=6 L=1 COLOR=GRAY00) KERNEL(W=6 L=3 COLOR=GRAY77) FONT=Arial HEIGHT=4 CFILL=GRAYDD ; /* */ DATA RankData1; INPUT x y; DATALINES; 1.3 1.9 3.6 2.3 4.5 9.4 2.9 1.9 9.3 1.5 ; /* RANK*/ /* rank_xrank_yxy*/ PROC RANK DATA=RankData1 OUT=RankOut1; VAR x y; RANKS rank_x rank_y; /* PRINT*/ PROC PRINT DATA=RankOut1;

OBS x y rank_x rank_y PROC RANK DATA=RankData1 TIES=HIGH OUT=RankOut3; 1 1.3 1.9 1 2.5 2 3.6 2.3 3 4.0 3 4.5 9.4 4 5.0 4 2.9 1.9 2 2.5 5 9.3 1.5 5 1.0 y rank_y 1.9 3 <--- 3 2.3 4 9.4 5 1.9 3 <--- 3 1.5 1 PROC RANK DATA=RankData1 TIES=LOW OUT=RankOut4; PROC RANK DATA=RankData1 DESCENDING OUT=RankOut2; VAR x y; RANKS rank_x rank_y; /* PRINT*/ PROC PRINT DATA=RankOut2; y rank_y 1.9 2 <--- 2 2.3 4 9.4 5 1.9 2 <--- 2 1.5 1 OBS x y rank_x rank_y 1 1.3 1.9 5 3.5 2 3.6 2.3 3 2.0 3 4.5 9.4 2 1.0 4 2.9 1.9 4 3.5 5 9.3 1.5 1 5.0 /* */ DATA RankData2; DO i=1 TO 1000; x=int(ranuni(8901)*700)*10; OUTPUT; END; DROP i; /* GROUP=10 */ PROC RANK DATA=RankData2 GROUP=10 OUT=RankOut5; VAR x; RANKS group; /* PRINT*/ PROC PRINT DATA=RankOut5(obs=10);

OBS x group 1 2460 3 2 5310 7 3 5850 8 4 6350 9 5 1290 1 6 3760 5 7 400 0 8 4110 6 9 1510 2 10 3560 5 PROC STANDARD DATA=StandardData1 OUT=StandardOut2 MEAN=50 STD=10; VAR score_x score_y score_z; /* */ DATA StandardData1; INPUT score_x score_y score_z; DATALINES; 48 61 79 38 25 75 42 83 88 29 12 73 43 75 82 ; /* STANDARD */ PROC STANDARD DATA=StandardData1 MEAN=0 STD=1 OUT=StandardOut1; VAR score_x score_y score_z; /* PRINT*/ PROC PRINT DATA=StandardOut1; /* MEANS */ PROC MEANS DATA=StandardOut1; /* */ DATA StandardData2; INPUT x y z; DATALINES; 4.0 1.2 2.9 2.5.. <--- yz 3.1 1.8 6.7 4.2 2.2 8.2 3.4. 1.3 <--- y ; /* STANDARD */ PROC STANDARD DATA=StandardData2 REPLACE OUT=StandardOut3; VAR x y z; /* PRINT*/ PROC PRINT DATA=StandardOut3; OBS x y z 1 4.0 1.20000 2.900 2 2.5 1.73333 4.775 3 3.1 1.80000 6.700 4 4.2 2.20000 8.200 5 3.4 1.73333 1.300

PROC STANDARD DATA=StandardData2 REPLACE MEAN=0 STD=1 OUT=StandardOut4; PROC STDIZE DATA=StandardData1 METHOD=RANGE out=stdizeout1; VAR score_x score_y score_z; /* PRINT*/ PROC PRINT DATA=StdizeOut1; OBS score_x score_y score_z 1 1.00000 0.69014 0.40000 2 0.47368 0.18310 0.13333 3 0.68421 1.00000 1.00000 4 0.00000 0.00000 0.00000 5 0.73684 0.88732 0.60000 /* */ DATA CorrData1; DO i=1 to 100; x=ranuni(123)*10; y=x+rannor(123)*2+10; z=y+rannor(123)*100+20; OUTPUT; END; /* CORR*/ PROC CORR DATA=CorrData1; VAR x y z; PROC CORR DATA=CorrData1 PEARSON SPEARMAN; VAR x y z;

x y z CORR 3 : x y z N 100 100 100 5.49662 15.36071 34.92645 2.64695 3.11228 83.37819 5.56634 15.92239 20.70364 /* */ X1 X2 X3 2.3 2.6 5.7 4.5 1.4. 1.2 4.1 8.6 5.7.. 5.3 5.1 2.5 1.3 2.4 5.4 X1 X2 X2 X3 X3 X1 2.3 2.6 2.6 5.7 5.7 2.3 4.5 1.4 4.1 8.6 8.6 1.2 1.2 4.1 5.1 2.5 2.5 5.3 x y z 0.01092 7.38125-128.28164 9.99491 20.61908 263.07416 5.3 5.1 2.4 5.4 5.4 1.3 1.3 2.4 x y z Pearson, N = 100 H0: Rho=0 Prob > r 1.00000 0.81160 <.0001 0.15076 0.1343 0.81160 <.0001 1.00000 0.18981 0.0586 0.15076 0.1343 0.18981 0.0586 1.00000 Spearman, N = 100 H0: Rho=0 Prob > r /* */ X1 X2 X3 2.3 2.6 5.7 1.2 4.1 8.6 5.3 5.1 2.5 1.3 2.4 5.4 x y z 1.00000 0.80196 <.0001 0.14418 0.1524 0.80196 <.0001 1.00000 0.18260 0.0690 0.14418 0.1524 0.18260 0.0690 1.00000

PROC CORR DATA=CorrData1; VAR y z; WITH x;

HKEY_LOCAL_MACHINESOFTWAREMicrosoftHTMLHelp1.x ServerSAS Server9.1 ServerSAS Server9.1sasnlsjahelp ServerSAS Server9.1sascorehelp ODS ESCAPECHAR='^'; ODS RTF FILE='c:temptest.rtf'; OPTIONS NONUMBER; TITLE '' J=R 'Page ^{thispage} of ^{lastpage}'; PROC PRINT DATA=sashelp.air; ODS RTF CLOSE; ODS RTF FILE='c:temptest2.rtf'; OPTIONS NONUMBER; TITLE '' J=R "{field{*fldinst {bi PAGE }}}~{bi of}~{field{*fldinst {bi NUMPAGES }}}"; PROC PRINT DATA=sashelp.air; ODS RTF CLOSE; ServerSAS Server9.1sasnlsjahelp; file://serversas Server9.1sasnlsjahelp; ServerSAS Server9.1sascorehelp; file://serversas Server9.1sascorehelp

DCREATE(, ); DATA data1; INFILE DATALINES DSD; LENGTH aa bb cc $10; INPUT aa bb ~ cc; CARDS; "DATA1","DATA2","DA,TA3" "DATA4",,"DATA5" ; OPTIONS NOXWAIT; X 'mkdir C:TEMPtestdir'; %LET rc=%sysfuncdcreatetestdir, C:TEMP; OPTIONS NOXWAIT; X 'attrib +R "C:test.sas"';

ODS HTML FILE='C:temptest1.html'; PROC TABULATE DATA=sashelp.class; CLASS sex / STYLE=[CELLWIDTH= 5 cm]; VAR weight / STYLE=[CELLWIDTH= 3 cm]; VAR height ; TABLES sex, (weight height*[style=[cellwidth=5 cm]]); ODS HTML CLOSE; /* Y */ AXIS1 ORDER=(-2 TO 10 BY 2); PROC GPLOT DATA=test; /* */ PLOT (y1 y2)*x / OVERLAY VAXIS=AXIS1; SYMBOL1 I=std V=none C=red; SYMBOL2 I=std V=none C=blue; /* */ /* LEGEND */ PLOT2 (mean1 mean2)*x / OVERLAY VAXIS=AXIS1 LEGEND; SYMBOL3 I=join V=dot C=red; SYMBOL4 I=join V=dot C=blue; QUIT; PROC FORMAT; /* SEX */ VALUE $sexw F='2 cm' /* F 2cm M 1cm */ M='1 cm'; ODS HTML FILE="C:temptest2.html"; PROC TABULATE DATA=sashelp.class; CLASS sex age; CLASSLEV sex / STYLE=[CELLWIDTH=$sexw.]; /**/ CLASSLEV age / STYLE=[CELLWIDTH=5 cm]; TABLE age,sex; ODS HTML CLOSE; a=choosea=.,0,a;

/* */ %LET num=10; ODS LISTING CLOSE; ODS OUTPUT SubsetSelSummary=SummaryOut; PROC REG DATA=test; MODEL y=x1-x8 / SELECTION=RSQUARE AIC BEST=&num; QUIT; ODS LISTING; /* AIC */ PROC SORT DATA=SummaryOut OUT=SortSummaryOut; BY AIC; /* */ PROC PRINT DATA=SortSummaryOut(OBS=&num) LABEL NOOBS; VAR NumInModel Rsquare AIC VarsInModel; R2 0.6064 0.6071 0.6067 0.6075 0.6064 0.6071 0.6067 0.6075 0.5960 0.5968 AIC -66.3777-66.2663-65.2617-65.2402-64.3902-64.2811-63.2676-63.2475-42.4039-42.3157 /* */ x1 x2 x4 x7 x8 x1 x2 x3 x4 x7 x8 x1 x2 x4 x5 x7 x8 x1 x2 x3 x4 x5 x7 x8 x1 x2 x4 x6 x7 x8 x1 x2 x3 x4 x6 x7 x8 x1 x2 x4 x5 x6 x7 x8 x1 x2 x3 x4 x5 x6 x7 x8 x1 x2 x4 x7 x1 x2 x3 x4 x7 NO VALUE 1001 100. 50 1002 50. 100. 150 1003 50. 200 1004 50 NO VALUE 1001 100 1001 50 1002 50 1002 100 1002 150 1003 50 1003 200 1004 50 /* */ DATA sample; INPUT no value; CARDS; 1001 100. 50 1002 50. 100. 150 1003 50. 200 1004 50 ; /* EXPAND */ PROC EXPAND DATA=sample OUT=out(DROP=time); CONVERT no / METHOD=STEP;