0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,,



Similar documents
24.15章.微分方程式

2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n


基礎数学I

第85 回日本感染症学会総会学術集会後抄録(I)

1 180m g 10m/s v 0 (t=0) z max t max t z = z max 1 2 g(t t max) 2 (6) r = (x, y, z) e x, e y, e z r = xe x + ye y + ze z. (7) v =


A A. ω ν = ω/π E = hω. E

Maxwell ( H ds = C S rot H = j + D j + D ) ds (13.5) (13.6) Maxwell Ampère-Maxwell (3) Gauss S B 0 B ds = 0 (13.7) S div B = 0 (13.8) (4) Farad

b3e2003.dvi

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

日本内科学会雑誌第98巻第3号

untitled

第86回日本感染症学会総会学術集会後抄録(II)

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

M ω f ω = df ω = i ω idx i f x i = ω i, i = 1,..., n f ω i f 2 f 2 f x i x j x j x i = ω i x j = ω j x i, 1 i, j n (3) (3) ω 1.4. R 2 ω(x, y) = a(x, y

Gmech08.dvi

A B 5 C mm, 89 mm 7/89 = 3.4. π 3 6 π 6 6 = 6 π > 6, π > 3 : π > 3


i I

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

1.1 ft t 2 ft = t 2 ft+ t = t+ t d t 2 t + t 2 t 2 = lim t 0 t = lim t 0 = lim t 0 t 2 + 2t t + t 2 t 2 t + t 2 t 2t t + t 2 t 2t + t = lim t 0


1 Ricci V, V i, W f : V W f f(v ) = Imf W ( ) f : V 1 V k W 1

F S S S S S S S 32 S S S 32: S S rot F ds = F d l (63) S S S 0 F rot F ds = 0 S (63) S rot F S S S S S rot F F (63)

Part. 4. () 4.. () Part ,

12 2 E ds = 1 ρdv ε 1 µ D D S S D B d S = 36 E d B l = S d S B d l = S ε E + J d S 4 4 div E = 1 ε ρ div B = rot E = B 1 rot µ E B = ε + J

example2_time.eps

i

dvipsj.4131.dvi

本文/020:デジタルデータ P78‐97

A. Fresnel) (M. Planck) 1905 (A. Einstein) X (A. Ampère) (M. Faraday) 1864 (C. Maxwell) 1871 (H. R. Hertz) (G. Galilei)

genron-3

46 Y Y Y Y 3.1 R Y Figures mm Nylon Glass Y (X > X ) X Y X Figure 5-1 X min Y Y d Figure 5-3 X =X min Y X =10 Y Y Y Y Figure 5-

(1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9

h = h/2π 3 V (x) E ψ = sin kxk = 2π/λ λ = h/p p = h/λ = kh/2π = k h 5 2 ψ = e ax2 ガウス 型 関 数 関 数 値

,..,,.,,.,.,..,,.,,..,,,. 2

受賞講演要旨2012cs3

1 8, : 8.1 1, 2 z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = n i=1 a ii x 2 i + i<j 2a ij x i x j = ( x, A x), f =

dプログラム_1

1 nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC

difgeo1.dvi

数学Ⅱ演習(足助・09夏)

E B m e ( ) γma = F = e E + v B a m = 0.5MeV γ = E e m =957 E e GeV v β = v SPring-8 γ β γ E e [GeV] [ ] NewSUBARU SPring

日本内科学会雑誌第101巻第12号

Microsoft Word - Wordで楽に数式を作る.docx


放射線専門医認定試験(2009・20回)/HOHS‐01(基礎一次)

基礎から学ぶトラヒック理論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

2 (f4eki) ρ H A a g. v ( ) 2. H(t) ( ) Chapter 5 (f5meanfp) ( ( )? N [] σ e = 8π ( ) e mc 2 = cm 2 e m c (, Thomson cross secion). Cha

tnbp59-17_Web:プO1/ky079888509610003201

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2.

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)


all.dvi


4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

第85 回日本感染症学会総会学術集会後抄録(III)

2 p T, Q

grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( )

Note5.dvi

( )/2 hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1

The painter of the Lascaux Cave (B.C.15,000) knew the geometry of apparent contours. ohmoto/class.html 25 ( ) 2 / 5

Ł\”ƒ-2005

II K116 : January 14, ,. A = (a ij ) ij m n. ( ). B m n, C n l. A = max{ a ij }. ij A + B A + B, AC n A C (1) 1. m n (A k ) k=1,... m n A, A k k

(w) F (3) (4) (5)??? p8 p1w Aさんの 背 中 が 壁 を 押 す 力 垂 直 抗 力 重 力 静 止 摩 擦 力 p8 p

: =, >, < π dθ = dφ = K = 1/R 2 rdr + udu = 0 dr 2 + du 2 = dr 2 + r2 1 R 2 r 2 dr2 = 1 r 2 /R 2 = 1 1 Kr 2 (4.3) u iu,r ir K = 1/R 2 r R

i ( ) PDF I +α II II III A: IV B: V C: III V I, II III IV V III IV krmt@sci.u-toyama.ac.jp

f (x) x y f(x+dx) f(x) Df 関数 接線 x Dx x 1 x x y f f x (1) x x 0 f (x + x) f (x) f (2) f (x + x) f (x) + f = f (x) + f x (3) x f

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

dynamics-solution2.dvi

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

(1) 3 A B E e AE = e AB OE = OA + e AB = (1 35 e ) e OE z 1 1 e E xy e = 0 e = 5 OE = ( 2 0 0) E ( 2 0 0) (2) 3 E P Q k EQ = k EP E y 0

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

( ) a, b c a 2 + b 2 = c : 2 2 = p q, p, q 2q 2 = p 2. p 2 p q 2 p, q (QED)

L A TEX ver L A TEX LATEX 1.1 L A TEX L A TEX tex 1.1 1) latex mkdir latex 2) latex sample1 sample2 mkdir latex/sample1 mkdir latex/sampl

II 2 II

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) Carathéodory 10.3 Fubini 1 Introduction [1],, [2],, [3],, [4],, [5],, [6],, [7],, [8],, [1, 2, 3] 1980

330

A A = a 41 a 42 a 43 a 44 A (7) 1 (3) A = M 12 = = a 41 (8) a 41 a 43 a 44 (3) n n A, B a i AB = A B ii aa

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

( )


A

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

untitled

Quiz x y i, j, k 3 A A i A j A k x y z A x A y A z x y z A A A A A A x y z P (x, y,z) r x i y j zk P r r r r r r x y z P ( x 1, y 1, z 1 )

untitled

f(x,y) (x,y) x (x,y), y (x,y) f(x,y) x y f x (x,y),f y (x,y) B p.1/14

1. x { e 1,..., e n } x = x1 e1 + + x n en = (x 1,..., x n ) X, Y [X, Y ] Intrinsic ( ) Intrinsic M m P M C P P M P M v 3 v : C P R 1

日本糖尿病学会誌第58巻第2号

f (x) f (x) f (x) f (x) f (x) 2 f (x) f (x) f (x) f (x) 2 n f (x) n f (n) (x) dn f f (x) dx n dn dx n D n f (x) n C n C f (x) x = a 1 f (x) x = a x >



C : q i (t) C : q i (t) q i (t) q i(t) q i(t) q i (t)+δq i (t) (2) δq i (t) δq i (t) C, C δq i (t 0 )0, δq i (t 1 ) 0 (3) δs S[C ] S[C] t1 t 0 t1 t 0

phs.dvi

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

Transcription:

2012 10 13 1,,,.,,.,.,,. 2?.,,. 1,, 1. (θ, φ), θ, φ (0, π),, (0, 2π). 1

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,, ψ ϕ 1.. (x 1,, x m ) ( x 1,, x m ),, ( x 1 (x 1,, x m ),, x m (x 1,, x m ) ). 1. 2 E 2, (x, y) R 2., (r, θ)., r (0, ), θ (0, 2π),. 2

3. r = x 2 + y 2 (1) θ = tan 1 y x (2).. x = r cos θ (3) y = r sin θ (4) 3... v. T M. T M.,, 3.,. 3

4,.,. (x 1,, x m ) M., f, ( / x i ). ( / x i ) f. ( ) ( ) x i f := x i f(x1,, x m ). (5),,. ( / x i ) x i.. v = m i=1 ( ) v i x i, Einstein,. ( ) v = v i x i (6) m M T M. M N f. M (x 1,, x m ), N (y 1,, y n ), f, i = 1,, n, y i = f i (x 1,, x m ). f, N g, 4

f g = g f, M. f g g. M T M, N T f() N.. v T M f v, N. (f v)g = v(f g) (7) v f g., f v. M (x 1,, x m ), N (y 1,, y n ). v = v i ( / x i )., ( ) v i x i g ( f 1 (x),, f n (x) ) = { v i ( f j x i ) ( ) } y j g (8) f()., ( ) f f v = v i j x i ( ) y j f() (9)., f v, v f Jacobi., f v f. 4 T M. T M,. m V,.,. k (v 1,, v k ) V V R k., T, (a, b R). T (, av + bw, ) = a T (, v, ) + b T (, w, ) (10) 1. V. V. 5

k S l T, S T. S T (v 1,, v k, v k+1,, v k+l ) = S(v 1,, v k ) T (v k+1,, v k+l ) (11). (S T ) U = S (T U) (12) (a S + b T ) U = a S U + b T U (13) U (a S + b T ) = a U S + b U T (14) ( S, T, U,, a, b R. ) e i V. V e i (i = 1,, n). e i (e j ) = δ i j (15) δ i j i = j 1, 0 Kronecker. k, T i1 i k = T (e i1,, e ik ) (16)., v i = v i j e j V, T i1 i k e i 1 e i k i1 i (v 1,, v k ) = v 1 v k k T i1 i k i1 i = v 1 v k k T (e i1,, e ik ) i = T (v 1 i 1 e i1,, v k k e ik ) = T (v 1,, v k ) (17), T = T i1 i k e i 1 e i k (18)., e i 1 e i k k., k k V. T i1 i k T i 1 i k. k V m k. 6

k T 2,,., T i1 i k T (, v,, w, ) = T (, w,, v, ) (19) 2 i,.,., T,. A k (T ) = T [i1 i k ]e i 1 e i k = 1 k! δj 1 j k i 1 i k T j1 j k e i 1 e i k (20), T [i1 i k ] = 1 k! δj 1 j k i 1 i k T j1 j k (21), Kronecker δ j 1 j k i 1 i k, (i 1,, i k ) (j 1,, j k ) 1, 1, 0., 2 S, T,. A k+l (A k (S) A l (T )) = A k+l (S T ) (22), 1. 2. 2., 2, [ ] 0 1 [T ij ] = (23) 1 0. 1. (22). 7

k T, w, w T., w T w T (v 1,, v k 1 ) = T (w, v 1,, v k 1 ) (24).,, k 1. wedge k α l β k + l α β *1. α β = (k + l)! A k+l (α β). (25) k! l! wedge. (25). (k + l)! α β = α [i1 i k! l! k β ik+1 i k+l ] e i 1 e i k+l = 1 k! l! δj 1 j k+l i 1 i k α j1 j k β jk+1 j k+l e i 1 e i k+l (k + l)! = α j1 j k! l! k β jk+1 j k+l e [j 1 e jk+l]. (26) k α l β, m γ,, a, b R, wedge. 2. e i e j. α β = ( 1) kl β α, (27) α (a β + b γ) = a α β + b α γ, (28) α (β γ) = (α β) γ. (29) *1. 8

ω. ω = ω i1 i k e i 1 e i k = ω [i1 i k ]e i 1 e i k, e i 1 e i k = = ω i1 i k e [i 1 e i k]. (30) k! (k 1)! A ( k e i 1 (e 2 e k ) ) = k! A k (e i 1 e i k ) = k! e [i 1 e i k]. (31), e [i 1 e i k] = 1 k! ei 1 e i k. (32) (32) (30), ω = 1 k! ω i 1 i k e i 1 e i k = ω i1 i k e i1 e ik (33) i 1 <i 2 < <i k., {e i 1 e i k i 1 < < i k } k., k k V. k V m C k (V m ). e i 1 e i k (32), v 1,, v k, e i 1 e i k (v 1,, v k ) = δ i 1 i k j 1 j k e j 1 (v 1 ) e j k (v k ) e i 1 (v 1 ) e i k (v 1 ) = det e i 2 (v 2 ) e i 2 (v 2 ). (34) e i k (v k ) e i k (v k ), e i 1 e i k (e i1,, e ik ) = 1.., e i 1 e i k (e i1,, e ik ) k!. 9

., (e i ) (ē i ) ē i = e j L j i (35)., e i = R i jē j (36), R i j., (35) e j. L j i = e j (ē i ) = R j kē k (ē i ) = R j kδi k = R j i.,, ē i = (L 1 ) i j ej (37)., L 1 [L j i]., v i = ē i (v j e j ) = (L 1 ) i k ek (v j e j ) = (L 1 ) i k δk j v j = (L 1 ) i j vj, v i = (L 1 ) i j vj (38) L 1.,., ᾱ i = α j e j (ē i ) = α j e j (e k L k i) = α j δ j k Lk i = α j L j i 10

., ᾱ i = L j iα j (39), L.,. T i1 i k = L j 1 i1 L j k ik T j1 j k (40).,, L 1, L., LL 1 = I,. Einstein. V = T M, L. M (x i ) ( x i ). e i = / x i, ē i = / x i., ( ) ( ) x j x i = x i ( ) x j (41)., ( ) x L j j i = x i. (42)., ( ) x (L 1 ) j j i = x i (43). v, ( ) x v i i = x j v j (44)., Jacobi,.. α ( ) x j ᾱ i = x i.. 11 α j (45)

3. 2 Euclid E 2. xy, (r, θ) L, L 1. 5, M T M.,., v., v = v i (x 1,, x m ) x i (46). v i (x 1,, x m ). v. M k k. 0. e i = / x i. / x i dx i. k ω. ω = 1 k! ω i 1 i k (x 1,, x k ) dx i 1 dx i k. (47), ω i1 i k (x 1,, x k ). M k k T M. 12

6 ω k T M, dω k+1 T M. dω = 1 k! = ω i1 i k x j dx j dx i 1 dx i k i 1 <i 2 < <i k ω i1 ik x j dx j dx i 1 dx i k. (48), x ( ).,.,. d x i = xi x j dxj. (49) a, b R, k ω, l τ, d. d(a ω + b τ) = a dω + b dτ, (50) d(ω τ) = (dω) τ + ( 1) k ω dτ. (51) d(dω) = 0 (52) 4. 2 Euclid E 2 f = x 2 + y 2 = r 2 df,, df. 13

5. 3 Euclid E 3 (x, y, z) 0, 1, 2 grad, curl, div. 7 M N f, f 1, M N f., f (. ). k T f() N k T k T M, v i T M. (f T )(v 1,, v k ) = T (f v 1,, f v k ). (53) M (x i ), N (y j ), f y j = f j (x 1,, x m ),, (( ) ( ) ) (f T ) i1 i k =(f T ) x i,, 1 x i k ( ( f j 1 ) ( ) ( f j k ) ( ) ) =T x i 1 y j,, 1 f() x i k y j k f() ( f j 1 ) ( f j k ) = x i 1 x i T j1 j k k (54) ( ). N,, M., 14

,.,. wedge, M N f, f. ω, λ k T N, τ l T N,. f (ω + λ) = f (ω) + f (λ), (55) f (ω τ) = f (ω) f (τ). (56), 0 ω = g, (56) f (gτ) = f gf (τ).,,., ω k T M, df ω = f dω (57).,,,. 6. (s, t) E 2, (x, y, z) E 3 f, x = s 2 + t 2, y = st, z = s + t., dx + dy + x dz. 8 Stokes f(x)dx.,. 2 Euclid E 2 ω = fdx dy = fd x dȳ (58) 15

., f E 2 x = y, ȳ = x. E 2 ω. ω := E 2 dx dy = 1 R 2 (59).,, := E 2 d x dȳ = 1 R 2 (60).,.. M 2 (x 1,, x n ), ( x 1,, x n ), det[ x j / x i ] > 0, (x 1,, x n ) ( x 1,, x n ). M, M., 2.,, M.,,,. (x i ), ( / x i ). x i = xj x i x j (61),, 2.,., 1,, 1 o. o (e 1,, e n )., o. o *2. o. m m ω. ω 0 (x i )., ω. M ω := ω 1 m (x 1,, x m )dx 1 dx 2 dx m (62) *2, o n T M/R >., R > = {x R x > 0} 16

(, ω 1 m (x 1,, x m ) 0. ), ω 0, ω,.. 7. S 1 = {(x, y) E 2 x 2 + y 2 = 1}, θ. S 1 dθ. S 1 E 3 S 2,.. p S, M (x 1,, x m ), (x 1,, x p, 0,, 0). ι : S M. m M, p < m, ω p T M. M p S, ω. ω := S S ι ω. (63) Stokes 5, R m 1 R M., V = [0, ). V., Stokes. 1. (Stokes [2]) n M p 1 α, M ( 17

) p V. dα = α. (64) V V. V (y 1,, y n 1 ), (t, y 1,, y n 1 ) V, V., t t V ( ).. [dt] o V = o V (65) V 5 9 2 g.,, g(u, v) = 0 u T M, v = 0. g ( ), i = 1,, s g ii = 1, i = s + 1,, m g ii = 1, g ij = 0 (Sylvester )., (s, (m s)). Euclid 18

s = 0. s = 1, m s = 3. g(v, v) v.,. v, v g g. g V V. g, e i, g(e i ) = g ij e j (66)., g ij g., v v i g ij v j. det g 0, g. g 1 g ij., g ij., g ij g jk = δi k (67). g ij,. 10 o, p ω o 1., ω o = ω o (68), ω twisted p. n Ω twisted n form ω. twisted form. ω := ω o (69) Ω Ω o Ω o, o Ω.., Ω, (69)., well-defined. p α, n M p S. ι : S M., twisted form ι.,. 19

V, W. V. v, w W, v w v w W. V/W := V/. V/W, W. S, x T x S x. o T S, twisted form α, (o S ). (ι α) o = ι (α ot o) (70),., o 1 ( x ) > 0, o 2 ( y, z ) > 0, ( x, y, z ), o 1 o 2., M twisted p form S twisted p form. twisted p form p S,, S., S, twisted p form., form dual S twisted form dual S., form, Faraday-Schouten ( 6). Stokes 2. ( Stokes [2]) n M p 1 α, M ( ) V. dα = α. (71) V V *3. o V,T = o V,T [dt] (72) V *3. 20

6 3 form Faraday-Schouten 11 n., n. o. o E a. vol o = E 1 E n (73). E a = e i L i a (74),,, g ab = L i al j bg ij. (75) ±1 = (det[l i a]) 2 det[g ij ] (76) det[l i a] = o(e 1,, e n ) det[g ij ]. (77) 21

., e i, E a., det[l i a] = 1. (73) vol o = det[l i a]e 1 e n = e 1 e n., (73)., e i. o,. vol o = o(e 1,, e n ) det g ij e 1 e n. (78) 12 Hodge m V Hodge. { (e α 1 e α p )} o = 1 (n p)! (vol o) α 1 α p β1 β m p (e β 1 e β m p ). (79), vol p. 1 = vol (80).,,., p ω. s. ω = ( 1) p(m p)+s ω (81) 1 (m = 3, s = 0 ) p 0 1 2 3 ( 1) p(m p)+s 1 1 1 1 p ω, 1 ϕ, (ω ϕ) = g 1 (φ) ω. (82). 22

2 (m = 4, s = 1 ) p 0 1 2 3 4 ( 1) p(m p)+s -1 1-1 1-1 p ω, η, ω η = 1 p! ω α 1 α p η α 1 α p vol (83)., ω η = η ω (84)., p (ω, η) Ω. (ω, η) Ω = ω η. (85) 8. 4 (t, x, y, z) g ij = diag( 1, 1, 1, 1)., dt, dt dx, dx dy 4 Hodge. Ω 13 3 3. 3 V, 3 ρ, 2 D. D = V V ρ. (86) 23

, dd = ρ (87). 2 j S D, 1 H, H = S S j + t S D (88)., dh = j + D t. (89) 2 B 1 E., S, E = S t S B (90)., de = B t. (91) B, S, B = 0. (92) S, E, D db = 0. (93) D = ε 0 E (94). H, B B = µ 0 H (95). Maxwell.. 24

4 4 2 F = E dt + B (96). 4. (3 d (3). ) df = d (3) E dt + d (3) B + dt B ( t = d (3) E B ) dt + d (3) B t = 0. (97) (91), (93)., df = 0 (91), (93) 2 Maxwell 1. 4 2., 4 3. H = H dt + D, (98) J = j dt + ρ (99) dh = d (3) H dt + d (3) D + dt D ( t = d (3) H + D ) dt + d (3) D t = j dt + ρ = J (100)., (87),(89) 1., H = Y 0 F (101). 4, (96), (98), (99)., F, H, J 4. 25

9. (t, x, y, z), (101)., g ij = diag( 1, 1, 1, 1). 14 [1].,,,.,, Maxwell. [2],,. [3] 3.,.., (1965).,,.,,,., [4].,,, (= ).. [5]. 26

A α β = a k,l A k+l (α β). (102), a k,l. (29), a k,l+m a l,m = a k+l,m a k,l (103), e 1 e k = k!a k (e 1 e k ) (104) *4, a k 1,1 a k 2,1 a 2,1 a 1,1 = k!. (105), a k,1 = (k + 1)!. (106) (103), m = 1, a k,l+1 = k + l + 1 a k,l. (107) l + 1, a k,l = (k + l)! k! l! (108). *4 e 1 e k = A k (e 1 e k ).,. 27

[1] F. W. Hehl and Y. N. Obukhov, Foundations of Classical Electrodynamics: Charge, Flux, and Metric, Birkhäuser (2003). [2] The Geometry of hysics: An Introduction, 2nd. ed., Theodore Frankel, Cambridge (2004). [3],, (1988). [4],, (2005). [5] :,, (2009). 28