258 5) GPS 1 GPS 6) GPS DP 7) 8) 10) GPS GPS 2 3 4 5 2. 2.1 3 1) GPS Global Positioning System



Similar documents
1 Fig. 1 Extraction of motion,.,,, 4,,, 3., 1, 2. 2.,. CHLAC,. 2.1,. (256 ).,., CHLAC. CHLAC, HLAC. 2.3 (HLAC ) r,.,. HLAC. N. 2 HLAC Fig. 2

& Vol.5 No (Oct. 2015) TV 1,2,a) , Augmented TV TV AR Augmented Reality 3DCG TV Estimation of TV Screen Position and Ro

xx/xx Vol. Jxx A No. xx 1 Fig. 1 PAL(Panoramic Annular Lens) PAL(Panoramic Annular Lens) PAL (2) PAL PAL 2 PAL 3 2 PAL 1 PAL 3 PAL PAL 2. 1 PAL

28 Horizontal angle correction using straight line detection in an equirectangular image

Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels).

Input image Initialize variables Loop for period of oscillation Update height map Make shade image Change property of image Output image Change time L

IPSJ SIG Technical Report Vol.2012-CG-148 No /8/29 3DCG 1,a) On rigid body animation taking into account the 3D computer graphics came

Journal of Geography 116 (6) Configuration of Rapid Digital Mapping System Using Tablet PC and its Application to Obtaining Ground Truth

ActionScript Flash Player 8 ActionScript3.0 ActionScript Flash Video ActionScript.swf swf FlashPlayer AVM(Actionscript Virtual Machine) Windows

1 Web [2] Web [3] [4] [5], [6] [7] [8] S.W. [9] 3. MeetingShelf Web MeetingShelf MeetingShelf (1) (2) (3) (4) (5) Web MeetingShelf

17 Proposal of an Algorithm of Image Extraction and Research on Improvement of a Man-machine Interface of Food Intake Measuring System

2). 3) 4) 1.2 NICTNICT DCRA Dihedral Corner Reflector micro-arraysdcra DCRA DCRA DCRA 3D DCRA PC USB PC PC ON / OFF Velleman K8055 K8055 K8055

6_27.dvi

DPA,, ShareLog 3) 4) 2.2 Strino Strino STRain-based user Interface with tacticle of elastic Natural ObjectsStrino 1 Strino ) PC Log-Log (2007 6)

,,.,.,,.,.,.,.,,.,..,,,, i

IPSJ SIG Technical Report Vol.2012-CG-149 No.13 Vol.2012-CVIM-184 No /12/4 3 1,a) ( ) DB 3D DB 2D,,,, PnP(Perspective n-point), Ransa

IPSJ SIG Technical Report Vol.2009-DPS-141 No.20 Vol.2009-GN-73 No.20 Vol.2009-EIP-46 No /11/27 1. MIERUKEN 1 2 MIERUKEN MIERUKEN MIERUKEN: Spe

[2] OCR [3], [4] [5] [6] [4], [7] [8], [9] 1 [10] Fig. 1 Current arrangement and size of ruby. 2 Fig. 2 Typography combined with printing

20 Method for Recognizing Expression Considering Fuzzy Based on Optical Flow

Vol. 48 No. 3 Mar PM PM PMBOK PM PM PM PM PM A Proposal and Its Demonstration of Developing System for Project Managers through University-Indus

2. CABAC CABAC CABAC 1 1 CABAC Figure 1 Overview of CABAC 2 DCT 2 0/ /1 CABAC [3] 3. 2 値化部 コンテキスト計算部 2 値算術符号化部 CABAC CABAC

1 3DCG [2] 3DCG CG 3DCG [3] 3DCG 3 3 API 2 3DCG 3 (1) Saito [4] (a) 1920x1080 (b) 1280x720 (c) 640x360 (d) 320x G-Buffer Decaudin[5] G-Buffer D

(MIRU2008) HOG Histograms of Oriented Gradients (HOG)

WikiWeb Wiki Web Wiki 2. Wiki 1 STAR WARS [3] Wiki Wiki Wiki 2 3 Wiki 5W1H Wiki Web 2.2 5W1H 5W1H 5W1H 5W1H 5W1H 5W1H 5W1H 2.3 Wiki 2015 Informa

THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE.

, (GPS: Global Positioning Systemg),.,, (LBS: Local Based Services).. GPS,.,. RFID LAN,.,.,.,,,.,..,.,.,,, i

Vol.55 No (Jan. 2014) saccess 6 saccess 7 saccess 2. [3] p.33 * B (A) (B) (C) (D) (E) (F) *1 [3], [4] Web PDF a m

B HNS 7)8) HNS ( ( ) 7)8) (SOA) HNS HNS 4) HNS ( ) ( ) 1 TV power, channel, volume power true( ON) false( OFF) boolean channel volume int

2007/8 Vol. J90 D No. 8 Stauffer [7] 2 2 I 1 I 2 2 (I 1(x),I 2(x)) 2 [13] I 2 = CI 1 (C >0) (I 1,I 2) (I 1,I 2) Field Monitoring Server

日本感性工学会論文誌

A Feasibility Study of Direct-Mapping-Type Parallel Processing Method to Solve Linear Equations in Load Flow Calculations Hiroaki Inayoshi, Non-member

Vol.54 No (July 2013) [9] [10] [11] [12], [13] 1 Fig. 1 Flowchart of the proposed system. c 2013 Information

1 Kinect for Windows M = [X Y Z] T M = [X Y Z ] T f (u,v) w 3.2 [11] [7] u = f X +u Z 0 δ u (X,Y,Z ) (5) v = f Y Z +v 0 δ v (X,Y,Z ) (6) w = Z +

光学

1 UD Fig. 1 Concept of UD tourist information system. 1 ()KDDI UD 7) ) UD c 2010 Information Processing S

9_18.dvi

Web Web Web Web Web, i

7,, i

EQUIVALENT TRANSFORMATION TECHNIQUE FOR ISLANDING DETECTION METHODS OF SYNCHRONOUS GENERATOR -REACTIVE POWER PERTURBATION METHODS USING AVR OR SVC- Ju

GPGPU

Bleutooth 2009 Bluetooth Ver.3.0 Bluetooth LAN Bluetooth Bluetooth Bluetooth 2. Bluetooth ( Bluetooth) Bluetooth ( Bluetooth) 2. 1 Bluetooth IEEE802.1

Table 1. Assumed performance of a water electrol ysis plant. Fig. 1. Structure of a proposed power generation system utilizing waste heat from factori

1: A/B/C/D Fig. 1 Modeling Based on Difference in Agitation Method artisoc[7] A D 2017 Information Processing

3_23.dvi

(3.6 ) (4.6 ) 2. [3], [6], [12] [7] [2], [5], [11] [14] [9] [8] [10] (1) Voodoo 3 : 3 Voodoo[1] 3 ( 3D ) (2) : Voodoo 3D (3) : 3D (Welc

Development and Field Test of a Portable Camera System for Long Term Observation of Natural Dam Ken AKIYAMA (Tohoku Univ.), Genki YAMAUCHI (Tohoku Uni

(a) 1 (b) 3. Gilbert Pernicka[2] Treibitz Schechner[3] Narasimhan [4] Kim [5] Nayar [6] [7][8][9] 2. X X X [10] [11] L L t L s L = L t + L s

ICT a) Caption Presentation Method with Speech Expression Utilizing Speech Bubble Shapes for Video Content Yuko KONYA a) and Itiro SIIO 1. Graduate Sc

Fig. 2 Signal plane divided into cell of DWT Fig. 1 Schematic diagram for the monitoring system

3D UbiCode (Ubiquitous+Code) RFID ResBe (Remote entertainment space Behavior evaluation) 2 UbiCode Fig. 2 UbiCode 2. UbiCode 2. 1 UbiCode UbiCode 2. 2

塗装深み感の要因解析

IPSJ SIG Technical Report Vol.2014-EIP-63 No /2/21 1,a) Wi-Fi Probe Request MAC MAC Probe Request MAC A dynamic ads control based on tra

Vol. 48 No. 4 Apr LAN TCP/IP LAN TCP/IP 1 PC TCP/IP 1 PC User-mode Linux 12 Development of a System to Visualize Computer Network Behavior for L

log F0 意識 しゃべり 葉の log F0 Fig. 1 1 An example of classification of substyles of rap. ' & 2. 4) m.o.v.e 5) motsu motsu (1) (2) (3) (4) (1) (2) mot

1., 1 COOKPAD 2, Web.,,,,,,.,, [1]., 5.,, [2].,,.,.,, 5, [3].,,,.,, [4], 33,.,,.,,.. 2.,, 3.., 4., 5., ,. 1.,,., 2.,. 1,,

第62巻 第1号 平成24年4月/石こうを用いた木材ペレット

soturon.dvi

Transcription:

Vol. 52 No. 1 257 268 (Jan. 2011) 1 2, 1 1 measurement. In this paper, a dynamic road map making system is proposed. The proposition system uses probe-cars which has an in-vehicle camera and a GPS receiver. On the probe-car, the system detects global position of roadside edge and road side hue information from the images taken by the camera. On the server side, the system integrates probed road shapes using DP matching based on hue information. The experimental results are shown that the proposition can generate accurate road map from plural road shapes detected by probe-cars. GPS GPS DP A Road Map Making Probe System by Integration of Road Shapes with Roadside Hue Information Hitoshi Yamauchi, 1 Akira Tomono 2, 1 and Akihiro Kanagawa 1 Recently, many car navigation systems are used. And the road map are used in the car navigation systems as a main information. However, the map data may not be refreshed and the contents is remained in old information. This is caused by huge cost for refreshing. For this problem, some researches are proposed. For example, a specific measurement car is employed for high accurate 1. PND Portable Navigation Device 3 1) Google Maps 2) 3),4) 1 Faculty of Computer Science and Systems Engineering, Okayama Prefectural University 2 Graduate School of Systems Engineering, Okayama Prefectural University 1 Presently with System Enterprise Co., Ltd. 257 c 2011 Information Processing Society of Japan

258 5) GPS 1 GPS 6) GPS DP 7) 8) 10) GPS GPS 2 3 4 5 2. 2.1 3 1) GPS Global Positioning System

259 Google Maps 2) GPS 3),4) GPS 11) GPS 6) 2.2 GPS 8) GPS 1 Fig. 1 Tracking line and road edge point detection. 9),10) 2 1 GPS GPS 2 2

260 3. 9) 10) ICP 3.1 2 GPS Fig. 2 Position estimation of pictures using GPS interpolation. ICP Interactive Closest Point 12) ICP ICP 2.2 GPS 3 3.2 GPS 9) 10)

261 Fig. 5 5 An example of getting road side information. 3 Fig. 3 The model of proposition for dynamic map making system. 4 Fig. 4 Road side region and hue sampling area. 4 m n h 0 h<360 i 1 i n H i { H i = h 360 } 360 (i 1) h< n n i (1) 3.3 RANSAC m 5 Hough

262 RANSAC RANdom SAmple Consensus 13) RANSAC RANSAC 3.4 3 GPS GPS DP Dynamic Programming 14) DP 2 2 DP 2 6 2 DP 6 DP Fig. 6 DP matching. w A A B A A = wa +(1 w)b (2) w 0.5 1 1 (2) w

263 H A,i = wh A,i +(1 w)h B,i (3) 4. 1 Table 1 Experimental data. data1 2007 1 19 09:30 2,923 data2 2007 1 25 09:30 2,946 data3 2007 1 31 09:15 3,152 datar 2007 1 18 14:30 2,888 1 GPS PointGrey Research Flea 1/3 CCD 640 480 [pixel] IEEE1394 13FM22IR 2.2 [mm] 15 [fps] GPS 48 3.3 [m] CEP Intel Core2 Duo 3.0 GHz 2GB RAM PC GPS [deg] [m] 5 36 00 134 20 60 30 m =43 n =36 15 30 50 100 [m] RANSAC 43 7.0 [m] w =0.7 4.1 1 1.7 [km] data1 data3 3 ICP 30 40 [km/h] datar GPS GPS GPS data1 data3 7 7 GPS 8 Google Maps datar GPS GPS

264 7 data1 data3 9 data1 data3 Fig. 7 Road shapes of data1, data2 and data3. Fig. 9 Integration result of data1, data2 and data3. Fig. 8 8 data1 data3 GPS 1 GPS measurement result of data1, data2 and data3 (magnified, no.1). 2.5 3.0 [m] datar 7 GPS data1 data2 1 data3 2 9 10

265 Fig. 10 10 data1 data3 Integration result of data1, data2 and data3 (magnified). Fig. 11 11 data1 data3 GPS 2 GPS measurement result of data1, data2 and data3 (magnified, no.2). 15 [m] 9 10 ICP DP 10 7.0 [m] 9 GPS 11 data1 data3 GPS GPS Table 2 2 Processing times for integration process. 1 [sec] 2 [sec] [sec] 1,159.640 1,154.875 2,314.515 (15 [m]) 0.506 0.494 1.000 (30 [m]) 0.515 0.497 1.012 (50 [m]) 0.518 0.494 1.012 (100 [m]) 0.512 0.490 1.002 2 ICP DP 1 2 2 2,314.515 [sec] 1.0 [sec]

266 18 [fps] 10 2 4.2 4.1 12 data4 data6 data4 data6 data1 data4 data6 data4 data5 data6 13 13 ( 50480, 145050) GPS 12 data4 data6 Fig. 12 Road shapes of data4, data5 and data6. 13 data4 data6 GPS Fig. 13 GPS measurement result of data4, data5 and data6.

267 12 data5 data6 13 1 GPS 2 5. GPS RANSAC DP 1) (2006). 2) Google http://www.google.co.jp/help/maps/streetview/behind-the-scenes.html ( 2010-03-31). 3) http://www.premium-club.jp/technology/tech1.html ( 2010-03-31). 4) G-BOOK mx G-BOOK http://g-book.com/pc/whats G-BOOK mx/technology/probe.asp ( 2010-03-31). 5) G-BOOK mx G-BOOK http://g-book.com/pc/whats G-BOOK mx/technology/map.asp ( 2010-03- 31). 6) MIRU2009 IS3-30, pp.1570 1577 (2009). 7) D Vol.J92-D, No.2, pp.215 225 (2009). 8) ITS2004-68, pp.19 23 (2005). 9) GPS 8 IEEE 8th HISS pp.247 248 (2006). 10) ITS2006-62, pp.109 114 (2007). 11) ITS ITS http://internetits.org/ja/projects/pdf/report.pdf ( 2010-03-31). 12) Besl, P.J. and McKay, N.D.: A Method for Registration of 3-D Shapes, IEEE Trans. PAMI, Vol.14, No.2, pp.239 256 (1992). 13) Fischler, M. and Bolles, R.: Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography, Graphics and Image Processing, Vol.24, No.6, pp.381 395 (1981). 14) DP

268 PRMU2006-166, pp.31 36 (2006). ( 22 3 31 ) ( 22 10 4 ) 1993 1995 2006 2007 ITS IEEE 2008 2010 ITS 1983 1988 1993 2007 OR