1 2 1.1............................................ 3 1.2.................................... 7 1.3........................................... 9 1.4..



Similar documents
楕円曲線暗号と RSA 暗号の安全性比較

#2 (IISEC)

Koblitz Miller field Fp p prime field Fp E Fp Fp Hasse Weil 2.2 Fp 2 P Q R R P Q O P O R Q Q O R P P xp, yp Q xq, yq yp yq R=O


Block cipher

1

( a 3 = 3 = 3 a a > 0(a a a a < 0(a a a


2014 F/ E 1 The arithmetic of elliptic curves from a viewpoint of computation 1 Shun ichi Yokoyama / JST CREST,.

平成 30 年度 ( 第 40 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 30 ~8 年月 72 月日開催 30 日 [6] 1 4 A 1 A 2 A 3 l P 3 P 2 P 1 B 1 B 2 B 3 m 1 l 3 A 1, A 2, A 3 m 3 B 1,

2011 Future University Hakodate 2011 System Information Science Practice Group Report Project Name Visualization of Code-Breaking Group Name Implemati

example2_time.eps



1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)


untitled

日本内科学会雑誌第102巻第10号

untitled

, = = 7 6 = 42, =


index calculus

21 Key Exchange method for portable terminal with direct input by user

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

2012 A, N, Z, Q, R, C

( )

チュートリアル:ノンパラメトリックベイズ

ISO/IEC 9798プロトコルの安全性評価

Jacobson Prime Avoidance


untitled

2

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T


卓球の試合への興味度に関する確率論的分析

genus 2 Jacobi Pila Schoof 42 Adleman Huang Gaudry Harley l genus 2 Jacobi 17 Jacobi Spallek 52 theta CM Jacobi genus2 Wang 61 Weber 60 Wamelen

Centralizers of Cantor minimal systems


SQUFOF NTT Shanks SQUFOF SQUFOF Pentium III Pentium 4 SQUFOF 2.03 (Pentium 4 2.0GHz Willamette) N UBASIC 50 / 200 [

A Brief Introduction to Modular Forms Computation

.,.,..,? 2.,.?.,...,...,.,.,.,.,,..,..,,.,,.,.,..,..,....,.,.,.,?,...,,.... Dr.Hener, i

i I

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

ac b 0 r = r a 0 b 0 y 0 cy 0 ac b 0 f(, y) = a + by + cy ac b = 0 1 ac b = 0 z = f(, y) f(, y) 1 a, b, c 0 a 0 f(, y) = a ( ( + b ) ) a y ac b + a y



( ) x y f(x, y) = ax


0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,,

¥µ¥¤¥Ü¥¦¥º¡¦¥é¥Ü¥æ¡¼¥¹ À®²ÌÊó¹ð

x ( ) x dx = ax

RSA署名方式の安全性を巡る研究動向について

24.15章.微分方程式

1 TEPLA TEPLA (University of Tsukuba Elliptic Curve and Pairing Library) C 2 1 TEPLA TEPLA Barreto-Naehrig (BN) BN Opimal Ate TEPLA M

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

waseda2010a-jukaiki1-main.dvi

日本内科学会雑誌第101巻第12号

I. (CREMONA ) : Cremona [C],., modular form f E f. 1., modular X H 1 (X, Q). modular symbol M-symbol, ( ) modular symbol., notation. H = { z = x

(Requirements in communication) (efficiently) (Information Theory) (certainly) (Coding Theory) (safely) (Cryptography) I 1

( ) >

2011 Future University Hakodate 2011 System Information Science Practice Group Report Project Name Visualization of Code-Breaking RSA Group Name RSA C

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1

untitled

II

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

「産業上利用することができる発明」の審査の運用指針(案)

07N

II III I ~ 2 ~

中堅中小企業向け秘密保持マニュアル


PR映画-1

- 2 -



1 (1) (2)

4

ASF-01

1 GDP Q GDP (a) (b) (c) (d) (e) (f) A (b) (e) (f) Q GDP A GDP GDP = Q 1990 GNP GDP GNP A Q A 2 2


1: *2 W, L 2 1 (WWL) 4 5 (WWL) W (WWL) L W (WWL) L L 1 2, 1 4, , 1 4 (cf. [4]) 2: 2 3 * , , = , 1

ii

untitled

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )


( [1]) (1) ( ) 1: ( ) 2 2.1,,, X Y f X Y (a mapping, a map) X ( ) x Y f(x) X Y, f X Y f : X Y, X f Y f : X Y X Y f f 1 : X 1 Y 1 f 2 : X 2 Y 2 2 (X 1



地域総合研究第40巻第1号


ax 2 + bx + c = n 8 (n ) a n x n + a n 1 x n a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 4

2014 x n 1 : : :

第122号.indd

漸化式のすべてのパターンを解説しましたー高校数学の達人・河見賢司のサイト

2 probably 3 probability theory probability theory (gàil`ü) , 1:

6. Euler x

ISO/TC68における金融分野向け推奨暗号アルゴリズムの検討状況

f (x) f (x) f (x) f (x) f (x) 2 f (x) f (x) f (x) f (x) 2 n f (x) n f (n) (x) dn f f (x) dx n dn dx n D n f (x) n C n C f (x) x = a 1 f (x) x = a x >

96 7 1m = N 1A a C (1) I (2) A C I A A a A a A A a C C C 7.2: C A C A = = µ 0 2π (1) A C 7.2 AC C A 3 3 µ0 I 2 = 2πa. (2) A C C 7.2 A A

Skew-Frobenius IISEC, JANT18 1

Transcription:

2010 8 3 ( )

1 2 1.1............................................ 3 1.2.................................... 7 1.3........................................... 9 1.4........................................ 15 1.5......................................... 17 1.6 (1)........................... 21 1.7 (2)......................... 25 1.8 (3) 2..................... 27 2 30 2.1 (ECDLP).............................. 31 2.2........................................... 33 2.3 Baby-step Giant-step.................................. 35 2.4 ρ.............................................. 37 2.5............................... 43 2.6............................. 45 3 48 3.1 (ECC)..................................... 49 3.2 ECDH........................................ 51 3.3 ECElGamal...................................... 53 3.4 ECDSA......................................... 55 3.5.............................. 57 1

1., ( ). 2

1.1 p, 0 p 1 F p = {0, 1,..., p 1}. p 0 p 1, p,. 1.1 F 7 = {0, 1, 2, 3, 4, 5, 6} x + y 1.1. F p x x + p p, F p x x + p. x y = x + p y, F p. 1.2 F 7 = {0, 1, 2, 3, 4, 5, 6} x y 1.2. (additive group). 3

1.1 y x F 7 0 1 2 3 4 5 6 0 1 2 3 4 5 6 1.2 y x F 7 0 1 2 3 4 5 6 0 1 2 3 4 5 6 G (i) G a, b, c (a b) c = a (b c), (ii) G a a e = e a = a G e, (iii) G a a a = a a = e G a,, G (group). +. ( x y = y x ), ( x + y = y + x ). 4

F p p,. 1.3 F 7 = {0, 1, 2, 3, 4, 5, 6} x y 1.3. F p p, x, x + p, x + 2p, x + 3p,.... x y = (x + p) y = (x + 2p) y =,. (, p, x, a, b ap + by = 1, by 1 (mod p) b y 1 (mod p), x y = x b. a, b Euclid.) 1.4 F 7 = {0, 1, 2, 3, 4, 5, 6} x y (y 0) 1.4., ( 0 ) p F p (prime field).,, ( 0 ), (finite field).,.. 5

1.3 y x F 7 0 1 2 3 4 5 6 0 1 2 3 4 5 6 1.4 y x F 7 0 1 2 3 4 5 6 0 1 2 3 4 5 6 field, field ( )., köper (, ).,, field. 6

1.2 F p. 1.5 ( ) E : y 2 = x 3 + ax + b (a, b F p, E = 4a 3 + 27b 2 0) (1.1) F p (elliptic curve). 1.6 E : y 2 = x 3 + 3x + 4 F 7. E, x, y F p (x, y) F p - (F p -rational point). (the point at infinity) O. (x, y). 1.7 F 7 E : y 2 = x 3 + 3x + 4 10 1.5. 1.5 y 2 = x 3 + 3x + 4 F 7 - P 0 O P 1 (0, 2) P 9 (0, ) P 2 (1, 1) P 8 (1, ) P 3 (2, 2) P 7 (2, ) P 4 (5, 2) P 6 (5, ) P 5 7

E = 4a 3 + 27b 2 0, (1.1). E (discriminant). 2 F : y = x 2 + Bx + C F = B 2 4C, F 0 F. n G : y = A 0 x n + A 1 x n 1 + + A n G = A 2(n 1) 0 (α 1 α 2 ) 2 (α 1 α n ) 2 (α 2 α 3 ) 2... (α 2 α n ) 2 (α n 1 α n ) 2. α 1,..., α n G., n = 3, E = 4a 3 + 27b 2. 8

1.3,. ( x, y )., ( ). 1.8 ( ) R = P + Q. F p E : y 2 = x 3 + ax + b 2 P, Q ( O) 1. 2 P, Q (P = Q P ) l. 2. E l 3 R ( R = O ). 3. R x R (R = O R = O ). R R, R = R. O,. 1.9 1.6. 1.7 F 7 E : y 2 = x 3 + 3x + 4, 1.6 y 2 = x 3 + 3x + 4 F 7 - P 0 O P 1 (0, 2) P 6 (5, 5) P 2 (1, 1) P 7 (2, 5) P 3 (2, 2) P 8 (1, 6) P 4 (5, 2) P 9 (0, 5) P 5 (6, 0) 9

(elliptic curve) (ellipse).,.,., ( ).. 10

. 1.10 ( ) R = P + Q. F p E : y 2 = x 3 + ax + b 2 P, Q P = O : R = Q. Q = O : R = P. : P = (x P, y P ), Q = (x Q, y Q ) y P = y Q : R = O ( Q = P ). y P y Q : R = (x R, y R ). x R, y R x R = λ 2 x P x Q, y R = λ(x P x R ) y P, λ 2 P, Q ( P ). y P y Q x λ = P x Q 3x 2 P + a 2y P x P x Q x P = x Q 1.11 1.7 F 7 E : y 2 = x 3 + 3x + 4, P 2 + P 4, 2 P 6. 11

2 P = (x P, y P ), Q = (x Q, y Q ) (y P y Q )/(x P x Q ). x P = x Q 0,. P, Q E : y 2 = x 3 + ax + b y P y Q = (y P y Q )(y P + y Q ) x P x Q (x P x Q )(y P + y Q ) = yp 2 yq 2 (x P x Q )(y P + y Q ) = (x3 P + ax P + b) (x 3 Q + ax Q + b) (x P x Q )(y P + y Q ) = (x P x Q )(x 2 P + x P x Q + x 2 Q + a) (x P x Q )(y P + y Q ) = x2 P + x P x Q + x 2 Q + a y P + y Q, P = Q x P = x Q, y P = y Q. y P y Q = x2 P + x P x Q + x 2 Q + a = 3x2 P + a x P x Q y P + y Q 2y P 12

y 2 = x 3 + 3x + 4 F 7-1.7. 1.7 y 2 = x 3 + 3x + 4 F 7 - P 0 P 1 P 2 P 3 P 4 P 5 P 6 P 7 P 8 P 9 P 0 P 0 P 1 P 2 P 3 P 4 P 5 P 6 P 7 P 8 P 9 P 1 P 1 P 8 P 9 P 6 P 7 P 4 P 5 P 3 P 2 P 0 P 2 P 2 P 9 P 1 P 4 P 6 P 3 P 7 P 5 P 0 P 8 P 3 P 3 P 6 P 4 P 1 P 9 P 2 P 8 P 0 P 5 P 7 P 4 P 4 P 7 P 6 P 9 P 8 P 1 P 0 P 2 P 3 P 5 P 5 P 5 P 4 P 3 P 2 P 1 P 0 P 9 P 8 P 7 P 6 P 6 P 6 P 5 P 7 P 8 P 0 P 9 P 2 P 1 P 4 P 3 P 7 P 7 P 3 P 5 P 0 P 2 P 8 P 1 P 9 P 6 P 4 P 8 P 8 P 2 P 0 P 5 P 3 P 7 P 4 P 6 P 9 P 1 P 9 P 9 P 0 P 8 P 7 P 5 P 6 P 3 P 4 P 1 P 2 1.12 1.8, 1.10. 13

, y 2 = x 3 + ax + b ( 1.4), y 2 + a 1 xy + a 3 y = x 3 + a 2 x 2 + a 4 x + a 6 (Weierstrass ). y 2 = x 3 + ax + b. 14

1.4,. Mordell-Weil (Mordell-Weil group). (group order).. 1.13 1.7 F 7 E : y 2 = x 3 + 3x + 4 #E. F p,. 1.14 (Hasse-Weil ) F p E #E, #E. p + 1 2 p #E p + 1 + 2 p Hasse-Weil ( 1.14), F p p., F 7 1.8.,,. 1.15 1.7 F 7 E : y 2 = x 3 + 3x + 4 Hasse-Weil ( 1.14). 15

1.8 F 7 E : y 2 = x 3 + ax + b b 0 1 2 3 4 5 6 0 12 9 13 3 7 4 1 8 5 6 10 11 2 8 5 6 10 11 a 3 8 12 9 6 10 7 4 4 8 5 6 10 11 5 8 12 9 6 10 7 4 6 8 12 9 6 10 7 4 Deuring Hasse-Weil ( 1.14),., Deuring. Deuring, a, b, Hasse-Weil. F 7 ( 1.8). 16

1.5 F p E P ( (base point) ). d, P d d P = P + + P } {{ } d (scalar multiplication).,. 1.16 1.7 F 7 E : y 2 = x 3 + 3x + 4, P 1. 2 P 1 = 3 P 1 = 4 P 1 = 5 P 1 = 6 P 1 = 7 P 1 =, 2, 3,..., O. (point order)., P d P = O.,,. 1.17. 1.7 F 7 E : y 2 = x 3 + 3x + 4, P 1 17

x d x d, ( mod N ) RSA., d P,,. 18

d P, d 1., 8 P = P + P + P + P + P + P + P + P 7., 8 P = 2 (2 (2 P )), 3.,. d 2 d = 2 n 1 + d n 2 2 n 2 + + d 1 2 + d 0 (d i {0, 1}) = (1, d n 2,..., d 1, d 0 ) 2. 1.1 : P, d = (1, d n 2,..., d 1, d 0 ) 2 : d P 1. Q P 2. i = n 2,..., 1, 0 : 2.1 Q 2 Q 2.2 d i = 1 Q Q + P 3. Q., d P ( ) 1.5 log 2 d, d 1. 1.18, d = 3045 = (1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1) 2, Q.,. i 10 9 8 7 6 5 4 3 2 1 0 d i 0 1 1 1 1 1 0 0 1 0 1 2.1 2.1 2.2 19

F q E Mordell-Weil E(F q ), E(F q ) 2 C 1, C 2, E(F q ) C 1 C 2 (#C 1 #C 2, #C 1 (q 1))., E(F q ) ( E(F q ) C 1 ). 20

1.6 (1),.,. F p,, ( 10 50 ). ( 1.10),., (projective coordinates)., 3 (X : Y : Z)., 2 (X : Y : Z), (X : Y : Z ) X = cx, Y = cy, Z = cz c F p, 2. (X : Y : Z) = (2X : 2Y : 2Z) = = (X/Z : Y/Z : 1)., ( ) (x, y), (x : y : 1)., (X : Y : Z) (X/Z, Y/Z). 21

Jacobian, 2 X = c 2 X, Y = c 3 Y, Z = cz Jacobian (Jacobian projective coordinate).,. 22

Y 2 Z = X 3 + axz 2 + bz 3 (a, b F p, E = 4a 3 + 27b 2 0)., y 2 = x 3 +ax+b x = X/Z, y = Y/Z., X Z 0.,.,,. 1.19 ( ) F p E : Y 2 Z = X 3 + axz 2 + bz 3 2 P = (X P : Y P : Z P ), Q = (X Q : Y Q : Z Q ) R = P + Q = (X R : Y R : Z R ). P Q X R = va Y R = u(v 2 X P Z Q A) v 3 Y P Z Q Z R = v 3 Z P Z Q u = Y Q Z P Y P Z Q, v = X Q Z P X P Z Q, A = u 2 Z P Z Q v 3 2v 2 X P Z Q P = Q X R = 2hs Y R = w(4b h) 8YP 2 s 2 Z R = 8s 3 w = az 2 P + 3X2 P, s = Y P Z P, B = sx P Y P, h = w 2 8B 1.20. P Q : P Q :, P = (x : y : 1) d P = (X : Y : Z), (X/Z, Y/Z)., 1,. 23

,, Jacobian,. P Q P = Q 3, 1 4, 1 14 12 Jacobian 16 10 1.1, d d i, P = Q, P Q 1/2, P = Q Jacobian. 24

1.7 (2) 1.1 d 2., d m. m = 8 ( n 3 ). 1.2 (8 ) : P, d = (d n 1, d n 2,..., d 1, d 0 ) 2 : d P 0. i = 0, 1,..., 7 : 0.1 P i i P 1. Q P 4dn 1 +2d n 2 +d n 3 2. i = n 4, n 7,..., 2 : 2.1 Q 8 Q 2.2 Q Q + P 4di +2 i 1 +d i 2 3. Q. 1.2, 0. P 0, P 1,..., P 7, 1. 2.2. 1.1, 3. (window method). 1.21, d = 3045 = (1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1) 2, Q.,. i 8 5 2 d i d i 1 d i 2 111 100 101 2.1 2.1 2.2 1.1, 1.2 2.1 1/3, 8 P 3, 2.1 n., 2.2 1/3, 2.2 n/3. 1.1 2.2 1/2, 2.2 n/2,. 1.2 0.1,. 25

d 160, m = 2 4 2 5. 26

1.8 (3) 2, P P ( (x, y), (X : Y : Z))., d 2 d = 2 n 1 + d n 2 2 n 2 + + d 1 2 + d 0 (d i { 1, 0, 1}) = (1, d n 2,..., d 1, d 0 ) 2,. 1.3 ( 2 ) : P, d = (d n 1, d n 2,..., d 1, d 0 ) 2 : d P 1. Q P 2. i = n 2,..., 1, 0 : 2.1 Q 2 Q 2.2 d i = 1 Q Q + P 2.3 d i = 1 Q Q P 3. Q. d 2, NAF (non-adjacent form, ). d, 3d ( ) 2 (e n+1, e n,..., e 0 ) 2 d ( ) 2 (f n+1, f n,..., f 0 ) 2. d = (3d d)/2, 3d 2 d 2 2, d 2 ( d i = e i+1 f i+1 ). NAF,, 1 1, d ±1 log 2 d/3. 1.3 NAF, 1.33 log 2 n. 27

2 2, d i = 1,. 28

p,., y 2 = x 3 + ax + b.,.,. [ ],.,,.,,., (d P d ),.,.,,,. 29

2,. 30

2.1 (ECDLP) F p E, P d Q = d P ( )., P, Q Q = d P d (1 d l, l P ) (elliptic curve discrete logarithm problem, ECDLP). 2.1 1.7 F 7 E : y 2 = x 3 + 3x + 4, P = P 1, Q = P 2, Q = d P d. 2.1,.,.,. 2.2 F p, P, Q F p Q = d P d.. 31

P, Q = P d, P, Q d ( ), log P Q. y = log P Q. Q = d P d ( ).,. 32

2.2 2 P, Q Q = d P d (1 d l, l P ) ( ), 2 P, 3 P,..., l P (brute force method). 2.3 4 GHz, 1 4 2 30. 1 1, 2 160.. 1 3 10 7. 33

2 160,, ( 2 160 = 1461501637330902918203684832716283019655932542976 ).,,. Mathematica Maple,,. Risa/Asir,. 34

2.3 Baby-step Giant-step, Baby-step Giant-step (Baby-step Giant-step method). Q = d P, P l m = l ( x x ). d = sm + t (0 s, t < m), s, t d. s, t. R = m P, Q = d P = (sm + t) P = s (m P ) + t P = s R + t P, s, t Q t P = s R (2.1). 2 Q, Q P, Q 2 P, Q 3 P,..., Q (m 1) P O, R, 2 R, 3 R,..., (m 1) R, x. 2, s, t, d. m, 2m, 2 l. 2.4 Baby-step Giant-step, l 160 2 81. 2.3, 2 81,. 1 3 10 7., Baby-step Giant-step,. 35

, 2., 2 30 2 35, 2 40 2 45, 2 50 2 55. 36

2.4 ρ, ρ (ρ method), Baby-step Giant-step. Q = d P, s P + t Q = s P + t Q s, t, s, t (s s, t t ). (t t ) Q = (s s) P Q = s s t t P, (s s)/(t t ) d. mod l (l P ). 2.5 F 229 E : y 2 = x 3 + x + 44, P = (5, 116), Q = (155, 166) Q = d P. P l = 239., 26 P + 108 Q = 47 P + 188 Q = (9, 18) Q = 47 26 108 188 P = 21 80 P = 176 P d = 176. R i = s i P + t i Q, ρ, R i = R j R i, R j.. 37

( ) 2,.., (365 ) 23 1/2 2..,. ρ,. 38

ρ,,. R, (Random Walk ) f. R + M 0 if x(r) 0 (mod 4) R + M 1 if x(r) 1 (mod 4) f(r) = R + M 2 if x(r) 2 (mod 4) R + M 3 if x(r) 3 (mod 4) x(r) R x. M i = u i P + v i Q. 2.6 2.5, R 0 = (39, 159) = 54 P + 175 Q f,. R 9 R 21. M 0 = (135, 117) = 79 P + 163 Q M 2 = (84, 62) = 87 P + 109 Q M 1 = (96, 97) = 206 P + 19 Q M 3 = (72, 134) = 219 P + 68 Q. i R i s i t i x(r i ) mod 4 i R i s i t i x(r i ) mod 4 0 (39, 159) 54 175 3 16 (197, 92) 193 0 1 1 (160, 9) 34 4 0 17 (211, 47) 160 19 3 2 (130, 182) 113 167 2 18 (194, 145) 140 87 2 3 (27, 17) 200 37 3 19 (0, 68) 227 196 0 4 (36, 97) 180 105 0 20 (223, 153) 67 120 3 5 (119, 180) 20 29 3 21 (9, 18) 47 188 1 6 (108, 89) 0 97 0 22 (167, 57) 14 207 3 7 (81, 168) 79 21 1 23 (75, 136) 233 36 3 8 (223, 153) 46 40 3 24 (57, 105) 213 104 1 9 (9, 18) 26 108 1 25 (159, 4) 180 123 3 10 (167, 57) 232 127 3 26 (185, 227) 160 191 1 11 (75, 136) 212 195 3 27 (158, 26) 127 210 2 12 (57, 105) 192 24 1 28 (197, 92) 214 80 1 13 (159, 4) 159 43 3 29 (211, 47) 181 99 3 14 (185, 227) 139 111 1 30 (194, 145) 161 167 2 15 (158, 26) 106 130 2 31 (0, 68) 9 37 0 39

Random walk f,, 4.. ρ, 20. 40

, l., R i (distinguished point). x θ., 1/θ.,. R i = R j f(r i ) = f(r j ), f(f(r i )) = f(f(r j )), f(f(f(r i ))) = f(f(f(r j ))),...,,. 2.7 2.6, x 1 0 ( θ = 10), R 1 = (160, 9), R 2 = (130, 182), R 19 = (0, 68), R 31 = (0, 68). R 19 R 31, R 19 = 227 P + 196 Q = 9 P + 37 Q = R 31 d = 176. ρ, l, Baby-step Giant-step. l/θ, Baby-step Giant-step., ρ,.,,. 41

Certicom Certicom Waterloo Scott Vanstone 1985, (, Waterloo RIM ). Certicom,. 42

2.5., ρ. (Certicom Challenge.) 1997 12 79 Certicom Challenge 1998 01 89 Certicom Challenge 1998 03 97 Certicom Challenge 2002 10 109 Certicom Challenge 2009 07 112 2009 7 112. p = (2 128 3)/(11 6949) a = 4451685225093714772084598273548424 b = 2061118396808653202902996166388514 #E = 4451685225093714776491891542548933 x P = 188281465057972534892223778713752 y P = 3419875491033170827167861896082688 l = 4451685225093714776491891542548933 x Q = 1415926535897932384626433832795028 y Q = 3846759606494706724286139623885544 d = 312521636014772477161767351856699 Q x (π 3) 10 34,. 112, PlayStation 3 200., 2009 1 7. 43

Certicom Challenge Certicom,,.,. 359 100,000,,,. 44

2.6, ρ.,. 2.6.1 Menezes-Okamoto-Vanstone Waterloo Alfred Menezes, Scott Vanstone NTT Tatsuaki Okamoto, F p p + 1 (Supersingular ),. 2.8 1.8 F 7, Supersingular., ( ) Supersingluar. 2.6.2 Semaev-Smart-Satoh-Araki Igor Semaev, Bristol Nigel Smart, Takakazu Satoh Kiyomichi Araki, F p p (Anomalous ),. 2.9 1.8 F 7, Anomalous. 45

Menezes-Okamoto-Vanstone,,,. (pairing)., 2 e : E(F q ) E(F q ) G, P, P, Q, Q, e(p + P, Q) = e(p, Q) e(p, Q), e(p, Q + Q ) = e(p, Q) e(p, Q )., (bilinear map).,,, ID. 46

, P, Q Q = d P d.,, Baby-step Giant-step, ρ. ρ. [ ],,.,,.,. 47

3,.. 48

3.1 (ECC),. (elliptic curve cryptosystems, ECC)... 3.1 ( ).,. RSA, RSA 1024. RSA, ( d) 160.,. 3.1. F p, E : y 2 = x 3 + ax + b. P = (x P, y P ), l.. p = 2 160 2 31 1 = 1461501637330902918203684832716283019653785059327 a = 3 = 1461501637330902918203684832716283019653785059324 b = 163235791306168110546604919403271579530548345413 #E = 1461501637330902918203687197606826779884643492439 x P = 425826231723888350446541592701409065913635568770 y P = 203520114162904107873991457957346892027982641970 l = 1461501637330902918203687197606826779884643492439 49

3.1 Diffie-Hellman (ECDH) Menezes-Qu-Vanstone (ECMQV) ElGamal (ECElGamal) DSA (ECDSA), (encryption), (cryptsystem) 2.,. (cryptsystem ),. 50

3.2 ECDH, ( ).,, Diffie-Hellman (ECDH ). 3.2 (ECDH ) Alice Bob, F p E P. Alice Bob, 2 K A = K B. 1. Alice d A, P A = d A P Bob. 2. Bob d B, P B = d B P Alice. 3. P B Alice K A = d A P B,. 4. P A Bob K B = d B P A,. 3.3 1.7 F 7 E : y 2 = x 3 + 3x + 4 P = P 1, d A = 2, d B = 3. P A = K B = P B = K A = 3.4 ECDH, Alice K A Bob K B. ECDH. Carol, Alice Bob ECDH, F p, E, P. Alice Bob P A, P B. P A, P d A, P B, P d B, Carol d A, d B. ECDH. 51

Diffie-Hellman (ECDH ) P A = d A P, P B = d B P, P A, P B, P K = d A d B P Diffie-Hellman (ECDH ). ECDH., P A, P d A, K = d A P B, ECDH. ECDH, d A, d B K,. ECDH,, ECDH. 52

3.3 ECElGamal ECDH, ECElGamal. 3.5 (ECElGamal ) Alice Bob, F p E P. Alice Bob, Bob M. 1. Bob d B, P B = d B P. P B, d B. 2. Alice a r, P A = r P. b Bob P B, K = r P B. c M, C = M + K. d Bob C P A. 3. Bob a P A d B, K = d B P A. b M = C K, M. 3.6 ECElGamal, Alice K Bob K.. 53

, 1985 IBM Victor Miller Washington Neal Koblitz.,. 54

3.4 ECDSA, ECDSA. 3.7 (ECDSA ) Alice Bob, F p E P l. Alice Bob, Bob m. 1. Alice d A (1 d A l), P A = d A P. P A, d A. 2. Alice a r, U = r P = (x U, y U ). b m H(m). c u = x U mod l, v = (H(m) + u d A )/r mod l. d Bob (u, v). 3. Bob a Alice P A, d = 1/v mod l V = d H(m) P + d u P A = (x V, y V ). b u = x V mod l.,,. 3.8 ECDSA,. 55

DTCP,., DTCP (Digital Transmission Content Protection),. DTCP, ECDH, ECDSA. 56

3.5,,. 2, Baby-step Giant-step, ρ l. l,.,. 3.9 ( ) P. F p E 1. p, p. 2. a, b F p, E(a, b) : y 2 = x 3 + ax + b. (Hasse-Weil, p + 1 2 p #E(a, b) p + 1 + 2 p ). 3. #E(a, b) 2.. 4. #E(a, b) = p 2. (Anomalous ). 5. E(a, b) P. 3.10 Supersingular.. 3.11 3.,.. 57

NIST,,,. NIST. 58

(ECC), ( ). [ ],,.,., ANSI ( ), IEEE ( ), ISO ( ), NIST ( ), CRYPTREC ( ).,. 59

,.,., ( ). 2,., ( ),, 2004 5., ( ),, 2003 11.,. 3,. 3,,.,,, 2001 11. Joseph Silverman, A Friendly Introduction to Number Theory (3rd edition), Pearson Prentice Hall, 2006 [, ( 3 ),, 2007 ] Victor Shoup, A Computational Introduction to Number Theory and Algebra (1st edition) [ PDF : http://shoup.net/ntb/]. Jeffrey Hoffstein, Jill Pipher, Joseph Silverman, An Introduction to Mathematical Cryptography, Springer-Verlag, 2008 60

,,. 3,.,,, 2003 3,, BP, 1998 7 ( ),,, 2010 4, 2 (, ).,,, 2008 11,,,, 2004 3. 2. 3,. 4,. Neal Koblitz, A Course in Number Theory and Cryptography (2nd edition), Springer-Verlag, 1994 [, ( 2 ),, 1997 8 ] Ian Blake, Gadiel Seroussi, Nigel Smart, Elliptic Curves in Cryptography, Cambridge University Press, 2000 [,,, 2001 ] Darrel Hankerson, Alfred Menezes, Scott Vanstone, Guide to Elliptic Curve Cryptography, Springer, 2002, (, ),,, 2008 8, ( : ID ). ID. Luther Martin, Introduction to Identity-Based Encryption, Artech House, 2008 61

,,.,,. (ISEC) [2 1 ] (JANT) [3 1 ], ISEC, 300. (SCIS) [ 1 ], (IACR) CRYPTO EUROCRYPTO ASIACRYPTO PKC,. Workshop on Elliptic Curve Cryptography (ECC) 62