PowerPoint プレゼンテーション

Similar documents
微粒子合成化学・講義

ナノ粒子のサイズ・形態制御と 構造敏感型触媒プロセスへの応用

Fig. ph Si-O-Na H O Si- Na OH Si-O-Si OH Si-O Si-OH Si-O-Si Si-O Si-O Si-OH Si-OH Si-O-Si H O 6

ナノハイブリッド材料の創製

42 1 Fig. 2. Li 2 B 4 O 7 crystals with 3inches and 4inches in diameter. Fig. 4. Transmission curve of Li 2 B 4 O 7 crystal. Fig. 5. Refractive index

日立金属技報 Vol.34

(43) Vol.33, No.6(1977) T-239 MUTUAL DIFFUSION AND CHANGE OF THE FINE STRUCTURE OF WET SPUN ANTI-PILLING ACRYLIC FIBER DURING COAGULATION, DRAWING AND

** Department of Materials Science and Engineering, University of California, Los Angeles, CA 90025, USA) Preparation of Magnetopulmbite Type Ferrite

Table 1. Shape and smelting properties of chrome ores as delivered. Table 2. Chemical composition of chrome ores (%). Table 3. Chemical composition of

*1 *2 *1 JIS A X TEM 950 TEM JIS Development and Research of the Equipment for Conversion to Harmless Substances and Recycle of Asbe

X線分析の進歩36 別刷

Rate of Oxidation of Liquid Iron by Pure Oxygen Shiro BAN-YA and Jae-Dong SHIM Synopsis: The rate of oxidation of liquid iron by oxygen gas has been s

Introduction ur company has just started service to cut out sugar chains from protein and supply them to users by utilizing the handling technology of

微粒子合成化学・講義

RAA-05(201604)MRA対応製品ver6

X X 1. 1 X 2 X 195 3, 4 Ungár modified Williamson-Hall/Warren-Averbach 5-7 modified modified Rietveld Convolutional Multiple Whole Profile CMWP 8 CMWP

1. Precise Determination of BaAl2O4 Cell and Certification of the Formation of Iron Bearing Solid Solution. By Hiroshi UCHIKAWA and Koichi TSUKIYAMA (

CH 2 CH CH 2 CH CH 2 CH CH 2 CH 2 COONa CH 2 N CH 2 COONa O Co 2+ O CO CH 2 CH N 2 CH 2 CO 9 Change in Ionic Form of IDA resin with h ph CH 2 NH + COO

振動充填燃料の粒子焼結試験実施計画書

Vol. 19, No. 3 (2012) 207 Fig. 2 Procedures for minute wiring onto polyimide substrate. Fig. 3 Ink - jet printing apparatus as part of laser sintering

a b Chroma Graphein Chromatography

塗装深み感の要因解析

A Feasibility Study of Direct-Mapping-Type Parallel Processing Method to Solve Linear Equations in Load Flow Calculations Hiroaki Inayoshi, Non-member

16_.....E...._.I.v2006

149 (Newell [5]) Newell [5], [1], [1], [11] Li,Ryu, and Song [2], [11] Li,Ryu, and Song [2], [1] 1) 2) ( ) ( ) 3) T : 2 a : 3 a 1 :

Visual Evaluation of Polka-dot Patterns Yoojin LEE and Nobuko NARUSE * Granduate School of Bunka Women's University, and * Faculty of Fashion Science,

JAJP

Study on Application of the cos a Method to Neutron Stress Measurement Toshihiko SASAKI*3 and Yukio HIROSE Department of Materials Science and Enginee

スライド 1

The Effect of the Circumferential Temperature Change on the Change in the Strain Energy of Carbon Steel during the Rotatory Bending Fatigue Test by Ch

渡辺(2309)_渡辺(2309)

Fig. 1 Sampling positions from the ingot. Table 2 Chemical compositions of base metal (%) Fig. 2 (unit: mm) Shape and size of fatigue test specimen. T

03J_sources.key


untitled

36 th IChO : - 3 ( ) , G O O D L U C K final 1

UDC : ' : '24' : '24'26' : : A Study of Condition of Pits Formation and Their Fe

プラズマ核融合学会誌11月【81‐11】/小特集5

320 Nippon Shokuhin Kagaku Kogaku Kaishi Vol. /., No.1, -,* -,/ (,**1) 8 * ** *** * ** *** E#ect of Superheated Steam Treatment on the Preservation an

Fig. 1 Flow diagram of experimental apparatus employed Fig. 2 Porosity change during sulfurization of reduced sample pellets

Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels).

1 1 H Li Be Na M g B A l C S i N P O S F He N Cl A e K Ca S c T i V C Mn Fe Co Ni Cu Zn Ga Ge As Se B K Rb S Y Z Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb T e

JOURNAL OF THE JAPANESE ASSOCIATION FOR PETROLEUM TECHNOLOGY VOL. 66, NO. 6 (Nov., 2001) (Received August 10, 2001; accepted November 9, 2001) Alterna




000..\..

„´™Ÿ/’£flö

CuおよびCu‐Sn系化合物のSn‐Pbはんだ濡れ性解析

1) K. J. Laidler, "Reaction Kinetics", Vol. II, Pergamon Press, New York (1963) Chap. 1 ; P. G. Ashmore, "Catalysis and Inhibition of Chemical Reactio

錫-亜鉛-アルミニウム系鉛フリーはんだの実用化

J. Soc. Cosmet. Chem. Jpn. 7-chome, Edogawa-ku, Tokyo 132, Japan 2.1 J. Soc. Cosmet. Chem. Japan. Vol. 31, No

1) T. L. Cottrel, A. J. Matheson, Trans. Farad. Soc., 58, 2336(1962). 2) E. N. Chesnokov, V. N. Panfilov, Teor. Eksp. Khimiya, 17, 699(1981). 3) M. Ko

THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE.

Core Ethics Vol.

untitled

474 Nippon Shokuhin Kagaku Kogaku Kaishi Vol. /-, No.3,.1..2* (,**0) 24 Measurement of Deterioration of Frying Oil Using Electrical Properties Yoshio

DPA,, ShareLog 3) 4) 2.2 Strino Strino STRain-based user Interface with tacticle of elastic Natural ObjectsStrino 1 Strino ) PC Log-Log (2007 6)

Table 1. Assumed performance of a water electrol ysis plant. Fig. 1. Structure of a proposed power generation system utilizing waste heat from factori

untitled

untitled

1) Y. Kobuke, K. Hanji, K. Horiguchi, M. Asada, Y. Nakayama, J. Furukawa, J. Am. Chem. Soc., 98, 7414(1976). 2) S. Yoshida, S. Hayano, J. Memb. Sci.,

Developement of Plastic Collocation Method Extension of Plastic Node Method by Yukio Ueda, Member Masahiko Fujikubo, Member Masahiro Miura, Member Sum

_念3)医療2009_夏.indd

main.dvi


パナソニック技報

Transcription:

PREPARATION OF MONODISPERSED PARTICLES CONTROLLED IN SIZE AND SHAPE 1 E-mail: mura@tagen.tohoku.ac.jp

LaMer ITO Indium Tin Oxides 2

3 Basic concept For preparation of monodispersed particles

Stöber silica Widely used indutraially 4

Monodispersed particles Particles with uniformity in size, shape, structure, composition, etc. Within ca. 10 % in standard deviation of size. Since monodispersed particles have homogeneous character, they have highly function. For example, in the case of hematite α-fe 2 O 3, in spite of dark red for random particle system, it become yellow by μm in size and ellipsoid in shape, in contrast to blight red for platelet-type particles in the same hematite. 5

LaMer Model 6

For monodispersed particles 7

Basic concepts for monodispersed particle formation 1. Separation of nucleation and particle growth 2. Inhibition of aggregation between particles 3. Storing monomers (T. Sugimoto, Adv. Colloid Interface Sci. 28, 65 (1987).) 8

Separation of nucleation and particle growth Control for degree of supersaturation In dilute system or reservoir system Generally supersaturation for homogeneous nucleation is larger than that for heterogenous one. Control of nucleation period Period of nucleation should be shortened compare with particle growth. 9

Strict inhibition of aggregation Dilute system Electrostatic repulsion, which inhibits aggregation, becomes larger in lower electrolyte concentration. Protective colloids Specific adsorption onto surfaces Fixing particles Blocking Brownian motion by fixing them 10

Storing monomers Reservoir Oxide particles O supplied from water as a reservoir, which is uncontrollable. Hence, metallic ion reservoir should be controlled. Metallic particles Metal one has extremely low solubility in any solvent. Some devices are required for the furhter growth Supply from the outside Double-jet method for AgBr, AgCl etc. 11

12 Formation mechanism Don t determine growth mechanism, only judging from TEM photos.

13

Inside of CdS 14

15

16

17

18 Sol-gel method Stöber method to prepare silica particles

Stöber Silica 19

Sol-Gel method Metal alkoxide as a starting material is hydrolyzed to give sol in rather mild conditions. Since gel is finally obtained via sol phase, Gel-Sol is called. For monodispersed particle production, we stop at the sol phase. Si(-O-C 2 H 5 ) 4 + 2H 2 O Ł SiO 2 + 4C 2 H 5 OH 20

Stöber silica sol Main preparation conditions TEOS=Tetraethylorthosili cate, Si(-O-C 2 H 5 ) 4 0.1 0.5 mol/l Solvent = ethanol NH 3 cat. =1 10 mol/l H2O= 0.5 2.0 mol/l Temp.= 0 30 21

Sol by Sol-Gel method TiO 2, ZrO 2 etc. Due to lower temperature, particles always show amorphous. For industrial use, thermal treatment at high temp. is sometimes required. Amorphous spherical SiO2: W. Stöber, A. Fink, and E. Bohn: J. Colloid Interface Sci. 26, (1968) 62. TiO2: E.A. Barringer and H.K. Bowen: J. Am. Ceram. Soc. 67 (1984) C-113. E. A. Barringer, N. Jubb, B. Fegley, Jr., R. L. Pober, and H. K. Bowen: in "Ultrastructure Processing of Ceramics, Glasses, and Composites," (L. L. Hench and D. R. Ulrich, Eds.), pp. 315-333. Wiley, New York, 1984. B. Fegley, Jr., E. A. Barringer, and H. K. Bowen: J. Am. Ceram. Soc. 67, (1984) C-113. ZrO2: K. Uchiyama, T. Ogihara, T. Ikemoto, N. Mizutani, and M. Kato: J. Mater. Sci. 22, (1987) 4343. T. Ogihara, N. Mizutani, and M. Kato: Ceram. Intern. 13, (1987) 35. PZT: T. Ogihara, H. Kaneko, N. Mizutani, and M. Kato: J. Mater. Sci. Lett. 7, (1988) 867. H. Hirashima, E. Onishi, and M. Nakagawa: J. Non- Cryst. Solids 121, (1990) 404. 22

The other monodispersed particle formation system Dilute system Matijevic Colloids Poly-styrene latex Polymerization Emulsion Soap-free Etc. 23

LaMer ITO Indium Tin Oxides 24

Gel-Sol method 25

Monodispersed Hematite prepared by Gel-sol method a) b) c) 26

Monodispersed CdS, CdS, and Cu 2 O a) b) c) 27

Difference between Sol-gel and Gel-sol method 28

Gel-sol method 29

Hematite Particle Synthesis 30

Gel-sol method for hematite 31

Gel-Sol Method Basic concept for the Gel-Sol method. 32

LaMer ITO Indium Tin Oxides 33

Uniform Titania Particles 34

Gel-Sol Process Titanium(IV) isopropoxide (TIPO) [Ti(OC 3 H 7 ) 4 ] Triethanolamine (TEOA) [N(C 2 H 4 OH) 3 ] TIPO:TEOA = 1:2 ([TIPO] 0 = 0.25 mol dm -3 ) C 2 H 4 O OH 4 C 2 Stable complex N C 2 H 4 O Ti OH 4 C 2 N C 2 H 4 O Ti OH 4 C 2 N C 2 H 4 O OH 4 C 2 C 2 H 4 OH H 2 O (+HClO 4 or + NaOH) Ti(OH) 4 gel 1st aging (100, 1 day) 2nd aging (140, 3 days) Shape controller TiO 2 (anatase) 35

Titania formation 36

Formation Mechanism of Titania 37

Concentration changes of TiO 2, Ti(OH) 4, and supernatant Ti 4+ species during the 2nd aging (ph = 10) Concentration (mol dm -3 ) 0.2 0.1 TiO 2 Ti(OH) 4 Supernatant Ti 4+ species 0 0 6 12 18 24 Time (h) Phase transformation: Ti(OH) 4 TiO 2 38

Effect of ph on the particle size and shape of TiO 2 Ellipsoidal particles No change from gel 39

Shape Control Effect of DETA on the shape of TiO 2 particles [DETA] = 0 0.05 M DETA CH 2 CH 2 NH 2 NH CH 2 CH 2 NH 2 0.10 M 0.25 M [TIPO] 0 = 0.25 M, [TEOA] = 0.50 M; ph 10.5 200 nm 40

Shape control of TiO 2 particles by the addition of amines Primary Amines Secondary Amines Tertiary Amines (a) ED 0.20M (b) TMD 0.05M (a) (C 2 H 5 ) 2 NH 0.05M (a) (CH 3 ) 3 N 0.50M (c) DETA 0.05M (d) TETA 0.05M (b) (C 2 H 5 ) 2 NH 0.20M (b) (C 2 H 5 ) 3 N 0.20M ED: NH 2 (CH 3 ) 2 NH 2 TMD: NH 2 (CH 2 ) 3 NH 2 DETA: NH 2 (CH 2 ) 2 NH(CH 2 ) 2 NH 2 TETA: NH 2 (CH 2 ) 2 NH(CH 2 ) 2 NH(CH 2 ) 2 NH 2 200 nm 41

Effect of Na oleate on the shape of TiO 2 particles [Na oleate] = 0 0.02 M [TIPO] 0 = 0.10 M, [TEOA] = 0.20 M; ph 9.8 200 nm Na oleate = CH 3 (CH 2 ) 7 CH=CH(CH 2 ) 7 COONa 42

Synthesis of Monodispersed Anisotropic TiO 2 Particles Gel-Sol Method: Particle Preparation Technique by using Metal Hydroxide Gels Synthesis of Monodispersed Anisotropic TiO 2 Particles 100 C 140 C 24 h Ti(OPr i ) 4 Stabilizer (N(CH 2 CH 2 OH) 3 ) Shape Controller (Amine, Amino Acid) ph Controller Gel Formation by H-Bonding Network of Ti(OH) 4 Sol Formation by Crystal Growth T. Sugimoto, Monodispersed Particles, Elsevier, Amsterdam, 2001. K. Kanie and T. Sugimoto, Chem. Commun., 2004, 1584. 43

Anisotropic TiO 2 Particles Obtained by the Gel-Sol Method Ethylenediamine Init ph: 10.5 Ethylenediamine Init ph: 10.5, Seeds Succinic Acid Init ph: 10.5 Gluconic Acid Init ph: 9.5 Glutamic Acid Init ph: 10.5 Oleic Acid Init ph: 11.5 none Init ph: 10.5 Oleic Acid Init ph: 9.9 T. Sugimoto, X. Zhou, and A. Muramatsu, J. Colloid Interface Sci., 259, 53 (2003). K. Kanie and T. Sugimoto, Chem. Commun., 2004, 1584. 44

Shape Control by Amines and Oleate Amines Parallel to C-axis Olate Organic Amines Adsorb on TiO 2 Surfaces Utilization for Organic-Inorganic Hybridization 45

1.The uniform anatase-type TiO 2 nanoparticles are formed by phase transformation of Ti(OH) 4 gel matrix. 2.Triethanolamine (TEOA) is adsorbed to growing TiO 2 particles at ph above 11, and change the morphology from cuboidal to ellipsoidal. The shape control can be explained in terms of the specific adsorption of TEOA to the crystal planes parallel to the c-axis of the tetragonal system. 3.Shape controllers modifies the particle shape to desired one. 46

LaMer ITO Indium Tin Oxides 47

48 Size-controlled hydrothermal synthesis of Bismuth Sodium & Bismuth Potassium titanates fine particles as lead-free piezoelectric ceramics K. Kanie, A. Muramatsu Tohoku Univ.

NEDO Project 2006 2009 First Stage BaTiO 3, Bi 0.5 Na 0.5 TiO 3 (BNT), Bi 0.5 K 0.5 TiO 3 (BKT) Development of Lead-free Piezoelectric Ceramic Actuators Tohoku Univ., Fuji Ceramics, etc. The first target is BaTiO 3, which has been prepared in liquid-phase to control the size, shape, crystallinity in nano-scale. The second target is BNT and BKT. NEDO = New Energy and Industrial Technology Development Organization [one of independent administrative institutions in Japan] 49

Upstream Nanoparticle production NEDO Project 2010-2012 Second Stage Nanotechnology Development of High Performance Lead-free Piezoelectric Actuators Actuator technology Practical application Company 1 Company 2 Companies 3, 4 Automobile Company Nanomaterial Different field Ceramics Different field Electronics and optical devices, Automobile Tohoku Univ. Layered ceramics Na x K 1-x NbO 3 (NKN), NaNbO 3 (NN), KNbO 3 (KN) Piezoelectric Devices Down stream Vertical Cooperation is composed of companies with different fields. 50

Synthesis method of BaTiO 3 /SrTiO 3 fine particles H) 3 gel-sol method Schematic drawing of reaction vessel (autoclave) Our First Trial! 51

1 BaTiO 3 with different shape Typical Example 52

Time evolution 0 5 min 30 min Gel Sol This is Gel-Sol method. 200 nm 53

54 Experimental The Present Study Synthesis of Bismuth Sodium Titanate (BNT) Particles Reaction conditions: Ti 4+ : Ti(OiPr) 4 /N(CH 2 CH 2 OH) 3 = 1/2 Bi 3+ : Bi(OH) 3 or Bi(NO 3 ) 3 Gel Na + : NaOH or NaClO 4 Ti 4+, Bi 3+ = 0.25 M; Na + = 2.0 M in H 2 O 250 C, 3 h Sol Autoclave for the Hydrothermal Reaction

Results and Discussion 55 ph = 7.0 ph = 8.5 (A) ph = 7.0; (B) 8.5: Bi 2 Ti 2 O 7 (C) ph = 13.0; (D) 14.0: BNT ph = 13.0 ph = 14.0 K. Kanie, H. Sakai, J. Tani, H. Takahashi, A. Muramatsu, Mater. Trans., 48, 2174 (2007).

Results and Discussion 56 Bi/Ti Molar ratio = 1/2 Bi/Ti Molar ratio = 1/4 (a) BNT particle and the growth direction. (b) ED pattern of BNT shown in (a). (c) the HRTEM image. (d) EDX profile of the BNT.

57 BNT and BKT Fine Particle Synthesis using TiO 2 TiO 2 0.25 mol/l Bi(OH) 3 0.125mol/L NaOH 1 16 mol/l KOH 1 16 mol/l Experimental Gel Mixed well Aged at 250 C for 3 days Washed by ion-exchanged water and centrifuged in 3 times Dried at 60 C Sol BNT and/or BKT particles Autoclave for the Hydrothermal Reaction

Results and Discussion 58 NaOH concentrations: (a) 4.0 (b) 8.0 (c) 10 (d) 12 (e) 14 (f) 16 M

Results and Discussion 59 KOH concentrations: (a) 4.0 (b) 8.0 (c) 10 (d) 12 (e) 14 (f) 16 M

60 Piezoelectric properties of ceramics prepared by using hydrothermally prepared BNT fine particles. The sintering period was adjusted to 2 hours. Sample Sintering temp. ( C) r (g/cm 3 ) tand (%) e 33 T /e 0 k p (%) d 33 (pc/n) BNT1 1 1,010 5.63 2.14 324 15.9 77.3 1,050 5.53 2.69 369 15.2 76.6 1,110 5.68 2.25 335 12.5 64.7 BNT2 2 1,010 4.41 --- --- --- --- 1,050 4.87 --- --- --- --- 1,110 5.11 --- --- --- --- BNT3 3 1,150 5.75 3.06 545 13.2 83.0 1 Cubic-shaped BNT finer particles; 2 Cubicshaped BNT larger particles; 3 BNT powder obtained by solid phase synthesis. The precursor of the solid phase synthesis of the BNT powder was Bi 2 O 3, Na 2 CO 3, and TiO 2. r: density; tand: tangent delta; dielectric constant: e 33T /e 0 ; coupling factor: k p ; piezoelectric constant: d 33. Results and Discussion

Preparation of Piezoelectric Ceramics: Utilization of Fine Particles - Problems - Difficulties in Control of the Resulting Crystallite Diameters and the Grain Boundary in Nano-scale Orientation Control of Plate-like NaNbO 3 by the Texture Treatment: Drastic Increase of the Piezoelectricity Y. Saito et al, Nature, 432, 84, (2004). BaTiO 3 Ceramic Obtained by Solid Phase Sintering Control of Nanostructures of Piezoelectric Ceramics Utilization of Shape- and Size-Controlled Fine- and Nano Particles 61

Hydrothermal Synthesis of Sodium Niobate NaNbO 3 Reaction conditions: Nb 5+ : Nb(OEt) 5 /N(CH 2 CH 2 OH) 3 = 1/3 Na + or K + : NaOH or KOH Nb 5+ Conc. in H 2 O: 0.25 M; 250 C, 3 h Gel Formation Aging Temperatures: (a) 100 C; (b) 150 C; (c) 200 C; (d) 250 C 100 C 150 C 200 C 250 C Gel-like Fiber 62

Hydrothermal Synthesis of Sodium Niobate NaNbO 3 Formation of Gel Intermediates Before Aging 15 min at 250 C 40 min 60 min Gel-like Fiber Gel-like Fiber NN Particle NN and KN Particles were Obtained by Way of Gel Intermediates 63

Size Control of Sodium Niobate NaNbO 3 Fine Particles Reaction conditions: Nb 5+ : 0.25 M (Nb 2 O 5 : 0.125 M) NaOH: 6.0 M in H 2 O NN Seed: 1.25~7.5 mol% (based on Nb 5+ ) Aging: 3 h with Stirring A TEM Image of NN Seeds for the Preparation of Size-Controlled NN Fine Particles with Cubic Shape 64

Size Control of Sodium Niobate NaNbO 3 Fine Particles (a) Seed: 1.25%, 250 C; (b) Seed: 2.5%, 250 C; (c) Seed: 5.0%, 200 C; (d) Seed: 5.0%, 200 C; (e) Seed: 1.25%, 150 C; (f) Seed: 7.5%, 150 C Size Control of NN Particle within the Range from 100 nm to 2 mm can be Achieved by Seeding Technique. KN Particles, Gradually Controlled in Size, are also Fabricated by Seeding. 65

Direct Hydrothermal Synthesis of Na x K 1-x NbO 3 (NKN) Fine Particle Reaction conditions: Nb 5+ : NbCl 5 in 0.1 M HCl Na +, K + : 12 M NaOH, 24 M KOH Nb 5+ Conc. in H 2 O: 0.25 M; 200 C, 3 h Hierarchical Structure Na and K Ions were Uniformly Existed in Each Particles 66

Direct Hydrothermal Synthesis of Na x K 1-x NbO 3 (NKN) Fine Particle Piezoelectric Properties of KN Ceramics No. Sintered Temp. ( C) Density r (g/cm 3 ) tand (%) d 33 (pc/n) KN-1 1,020 4.05 8.7 133.4 KN-2 1,040 4.07 6.8 120.0 KN-3 1,060 3.76 8.7 83.7 67

68

LaMer ITO Indium Tin Oxides 69

ITO ( TCO 70

1) 2) 3) 4) 6) 2 7) RGB 8) 71

72

ITO 3 O 2-, 200 400 600 800 1000 Wavelength [nm] = 3.5 4.0 ev (310 350 nm) = 1000 nm O 2- In 3+ O 2- e O 2- Sn 4+ O 2- In 3+ In 3+ In 3+ In 3+ O 2- O 2- O 2- O 2- O 2- e e O 2- Sn 4+ ITO ITO SnO 2 ZnO AZO 73 ITO

(2005) Ni 14.0 W 2.5 12.8 Co 28.3 Mo 15.4 Ti 29.4 In 60.0 Pt 20.8 74

Base Metal Rare Metal In V Pt-gr. Nb Ta Li Co Re B Mo W Sb Bi Ti Zr Mn REE Th Sn Ni In Cr Cd Se Al Pb Fe Cu Zn China Russia S.A. S.A. Brazil Australia Chile China Congo Australia Cuba Chile U.S.A. Russia Turkey U.S.A. Russia China U.S.A. Chile China Canada Russia China Russia Bolivia China Peru Australia S.A. Norway S.A. Australia Ukraine Ukraine China Australia China Russia U.S.A. Australia India Norway China Malaysia Indonesia Australia Russia Cuba but Canada U.S.A. China Kazakhstan S.A. India Australia China U.S.A. Chile U.S.A. Canada Guinea Australia Jamaica Australia China Russia Australia Ukraine Chile U.S.A. Indonesia Australia China U.S.A. 0 10 20 30 40 50 60 70 80 90 100 Reserves Distribution Russia Brazil 75

ITO Ar + ITO 10-5 ~ 10-4 Ω cm ITO ITO 10 % ITO ITO ITO 100 % (ITO + ) 10-3 ~ 10-1 Ω cm 76

Ł Ł Ł Ł 77

78

79

/ 80

nm ITO 81

82

83

84

ITO ITO 100nm ITO 85

ITO 86

ITO ITO 87

ITO ITO 100nm ITO 88

ITO In 3+ 0.25 M 0.50 M In(NO 3 ) 3 8.0 M NaOH 100 C, 24 h In(OH) 3 250 C, 3 h In(OH) 3 SnCl 4 (In 1-10%) 200-300 C 3 h In(OH) 3 ITO ITO 89

270 1 h Intensity[a.u.] 20 cubic In(OH) 3 cubic In 2 O 3 40 60 80 2θ[degree] 90

D. Yu, D. Wang, J. Lu, and Y. Qian, Inorganic Chemistry Communications 5, 475 (2002). J. E. Song, D. K. Lee, H. W. Kim, Y. I. Kim, and Y. S. Kang, Colloids and Surfaces A: Physicochem. Eng. Aspects 257, 539 (2005). J. E. Song, H. W. Kim, and Y. S. Kang, Current Applied Physics 6, 791 (2006). H. Xu and A. Yu, Materials Letters 61, 4043 (2007) C.-H. Han, S.-D. Han, J. Gwak, and S.P. Khatkar, Materials Letters 61, 1701 (2007) 91

ITO ITO Sn In(OH) 3 InOOH ITO 92

Experimental Procedure -Solvothermal synthesis- HO 93 Tetramethylammonium hydroxide (TMAH) (CH 3 ) 4 N OH N OH - ion resource 0.50 M InCl 3 & 0.050 M SnCl 4 in Ethylene glycol (EG) solution Stirred at 0 o C 1.5 M TMAH in EG solution ([TMAH] = 1.5, 2.0, 2.5) Stirred for 15 min Put 10 ml of suspension into autoclave Aged at 250 o C, 0 ~ 96 h Washed by EtOH, H 2 O and centrifuged Products (Analysis: XRD, TEM)

Effect of TMAH concentration 94 Undefined shape Cubic shape coefficient of variation 16.3% 11.4% 10.7%

Time dependence of particles growth Reaction condition: TMAH 2.0 M, 250 o C 95

Macroscopic change of reaction solution Reaction condition: TMAH 2.0 M, 250 o C Initial reaction solution Yellow colored gel ITO nanoparticles 96 250 o C 1 h 250 o C, 95 h Gel formation TMAH conc. 2.0, 2.5 M TMAH conc. 1.5 M NaOH system

High resolution TEM observation 97 HR-TEM image FT image HR-TEM image No grain boundary FT image Streaks

Effect of Sn concentration 98 Reaction condition : TMAH 2.0 M, 250 o C, 96 h InOOH InOOH + ITO ITO

Effect of Temperature 99 Reaction condition : TMAH 2.0 M, Sn/In = 0.1, 96 h

100 Electrical Resistivity of ITO nanoparticles Reaction condition: Base conc. 2.0 M, 250 o C, 96 h Basic agent: TMAH Basic agent: NaOH 14.0 ± 1.6 nm 11.4% 8.4 10-2 Ω cm 15.1 ± 2.9 nm 19.2% 1.1 10-1 Ω cm 43.5 ± 10.3 nm 23.7% 5.0 10-2 Ω cm

101

TiO 2 e - ITO I 3 - I - I - I - TiO 2 I 3 - e - e - e - I I - - I - TiO 2 (Voc) 102 Band Gap Energy /ev Voc TiO 2 ZnO SnO 2 ITO 3.2 3.3 3.6 3.8 ITO TiO 2 ITO = (Sn TiO 2 ITO ITO ITO * I. Hamberg and C. G. windows, J. Appl. Phys., 60 (1986) R123- R159

103