Dirichlet process mixture Dirichlet process mixture 2 /40 MIRU2008 :

Similar documents
IPSJ SIG Technical Report Pitman-Yor 1 1 Pitman-Yor n-gram A proposal of the melody generation method using hierarchical pitman-yor language model Aki

JOURNAL OF THE JAPANESE ASSOCIATION FOR PETROLEUM TECHNOLOGY VOL. 66, NO. 6 (Nov., 2001) (Received August 10, 2001; accepted November 9, 2001) Alterna

12/1 ( ) GLM, R MCMC, WinBUGS 12/2 ( ) WinBUGS WinBUGS 12/2 ( ) : 12/3 ( ) :? ( :51 ) 2/ 71

& 3 3 ' ' (., (Pixel), (Light Intensity) (Random Variable). (Joint Probability). V., V = {,,, V }. i x i x = (x, x,, x V ) T. x i i (State Variable),

/22 R MCMC R R MCMC? 3. Gibbs sampler : kubo/

X X X Y R Y R Y R MCAR MAR MNAR Figure 1: MCAR, MAR, MNAR Y R X 1.2 Missing At Random (MAR) MAR MCAR MCAR Y X X Y MCAR 2 1 R X Y Table 1 3 IQ MCAR Y I


28 Horizontal angle correction using straight line detection in an equirectangular image

1 Fig. 1 Extraction of motion,.,,, 4,,, 3., 1, 2. 2.,. CHLAC,. 2.1,. (256 ).,., CHLAC. CHLAC, HLAC. 2.3 (HLAC ) r,.,. HLAC. N. 2 HLAC Fig. 2

Isogai, T., Building a dynamic correlation network for fat-tailed financial asset returns, Applied Network Science (7):-24, 206,


Chapter16

? (EM),, EM? (, 2004/ 2002) von Mises-Fisher ( 2004) HMM (MacKay 1997) LDA (Blei et al. 2001) PCFG ( 2004)... Variational Bayesian methods for Natural

THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE.

4. C i k = 2 k-means C 1 i, C 2 i 5. C i x i p [ f(θ i ; x) = (2π) p 2 Vi 1 2 exp (x µ ] i) t V 1 i (x µ i ) 2 BIC BIC = 2 log L( ˆθ i ; x i C i ) + q

The Empirical Study on New Product Concept of the Dish Washer Abstract

kubostat7f p GLM! logistic regression as usual? N? GLM GLM doesn t work! GLM!! probabilit distribution binomial distribution : : β + β x i link functi

03.Œk’ì

IT,, i

MPC MPC R p N p Z p p N (m, σ 2 ) m σ 2 floor( ), rem(v 1 v 2 ) v 1 v 2 r p e u[k] x[k] Σ x[k] Σ 2 L 0 Σ x[k + 1] = x[k] + u[k floor(l/h)] d[k]. Σ k x

(3.6 ) (4.6 ) 2. [3], [6], [12] [7] [2], [5], [11] [14] [9] [8] [10] (1) Voodoo 3 : 3 Voodoo[1] 3 ( 3D ) (2) : Voodoo 3D (3) : 3D (Welc

untitled

橡ボーダーライン.PDF

揃 Lag [hour] Lag [day] 35

main.dvi


24 Depth scaling of binocular stereopsis by observer s own movements

23 The Study of support narrowing down goods on electronic commerce sites

60 (W30)? 1. ( ) 2. ( ) web site URL ( :41 ) 1/ 77


浜松医科大学紀要

80 X 1, X 2,, X n ( λ ) λ P(X = x) = f (x; λ) = λx e λ, x = 0, 1, 2, x! l(λ) = n f (x i ; λ) = i=1 i=1 n λ x i e λ i=1 x i! = λ n i=1 x i e nλ n i=1 x

24 Region-Based Image Retrieval using Fuzzy Clustering

n-jas09.dvi

16_.....E...._.I.v2006

IPSJ SIG Technical Report Vol.2012-MUS-96 No /8/10 MIDI Modeling Performance Indeterminacies for Polyphonic Midi Score Following and

1 Tokyo Daily Rainfall (mm) Days (mm)

10:30 12:00 P.G. vs vs vs 2

( ) [1] [4] ( ) 2. [5] [6] Piano Tutor[7] [1], [2], [8], [9] Radiobaton[10] Two Finger Piano[11] Coloring-in Piano[12] ism[13] MIDI MIDI 1 Fig. 1 Syst

橡最終原稿.PDF

ï\éÜA4*

Microsoft PowerPoint - SSII_harada pptx

1 [1, 2, 3, 4, 5, 8, 9, 10, 12, 15] The Boston Public Schools system, BPS (Deferred Acceptance system, DA) (Top Trading Cycles system, TTC) cf. [13] [

分布

1,a) 1,b) TUBSTAP TUBSTAP Offering New Benchmark Maps for Turn Based Strategy Game Tomihiro Kimura 1,a) Kokolo Ikeda 1,b) Abstract: Tsume-shogi and Ts


kut-paper-template.dvi

〈論文〉興行データベースから「古典芸能」の定義を考える

258 5) GPS 1 GPS 6) GPS DP 7) 8) 10) GPS GPS ) GPS Global Positioning System

IPSJ SIG Technical Report Vol.2016-CE-137 No /12/ e β /α α β β / α A judgment method of difficulty of task for a learner using simple

kubostat2015e p.2 how to specify Poisson regression model, a GLM GLM how to specify model, a GLM GLM logistic probability distribution Poisson distrib

Vol. 43 No. 2 Feb. 2002,, MIDI A Probabilistic-model-based Quantization Method for Estimating the Position of Onset Time in a Score Masatoshi Hamanaka

21 Key Exchange method for portable terminal with direct input by user

,,.,.,,.,.,.,.,,.,..,,,, i

Overview (Gaussian Process) GPLVM GPDM 2 / 59

4 i

,,,,., C Java,,.,,.,., ,,.,, i

* n x 11,, x 1n N(µ 1, σ 2 ) x 21,, x 2n N(µ 2, σ 2 ) H 0 µ 1 = µ 2 (= µ ) H 1 µ 1 µ 2 H 0, H 1 *2 σ 2 σ 2 0, σ 2 1 *1 *2 H 0 H

22 1,936, ,115, , , , , , ,

II 2 II

_念3)医療2009_夏.indd

EQUIVALENT TRANSFORMATION TECHNIQUE FOR ISLANDING DETECTION METHODS OF SYNCHRONOUS GENERATOR -REACTIVE POWER PERTURBATION METHODS USING AVR OR SVC- Ju

soturon.dvi

kubostat2017e p.1 I 2017 (e) GLM logistic regression : : :02 1 N y count data or

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

Studies of Foot Form for Footwear Design (Part 9) : Characteristics of the Foot Form of Young and Elder Women Based on their Sizes of Ball Joint Girth

2007/8 Vol. J90 D No. 8 Stauffer [7] 2 2 I 1 I 2 2 (I 1(x),I 2(x)) 2 [13] I 2 = CI 1 (C >0) (I 1,I 2) (I 1,I 2) Field Monitoring Server

「スウェーデン企業におけるワーク・ライフ・バランス調査 」報告書

4.1 % 7.5 %

塗装深み感の要因解析

第 55 回自動制御連合講演会 2012 年 11 月 17 日,18 日京都大学 1K403 ( ) Interpolation for the Gas Source Detection using the Parameter Estimation in a Sensor Network S. T

,,.,,.,..,.,,,.,, Aldous,.,,.,,.,,, NPO,,.,,,,,,.,,,,.,,,,..,,,,.,

25 II :30 16:00 (1),. Do not open this problem booklet until the start of the examination is announced. (2) 3.. Answer the following 3 proble

09‘o’–

わが国企業による資金調達方法の選択問題

Vol. 36, Special Issue, S 3 S 18 (2015) PK Phase I Introduction to Pharmacokinetic Analysis Focus on Phase I Study 1 2 Kazuro Ikawa 1 and Jun Tanaka 2

IPSJ-TOM

A Nutritional Study of Anemia in Pregnancy Hematologic Characteristics in Pregnancy (Part 1) Keizo Shiraki, Fumiko Hisaoka Department of Nutrition, Sc

..,,,, , ( ) 3.,., 3.,., 500, 233.,, 3,,.,, i

Variational Auto Encoder

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

kubo2015ngt6 p.2 ( ( (MLE 8 y i L(q q log L(q q 0 ˆq log L(q / q = 0 q ˆq = = = * ˆq = 0.46 ( 8 y 0.46 y y y i kubo (ht

[2] OCR [3], [4] [5] [6] [4], [7] [8], [9] 1 [10] Fig. 1 Current arrangement and size of ruby. 2 Fig. 2 Typography combined with printing

The 18th Game Programming Workshop ,a) 1,b) 1,c) 2,d) 1,e) 1,f) Adapting One-Player Mahjong Players to Four-Player Mahjong

Q [4] 2. [3] [5] ϵ- Q Q CO CO [4] Q Q [1] i = X ln n i + C (1) n i i n n i i i n i = n X i i C exploration exploitation [4] Q Q Q ϵ 1 ϵ 3. [3] [5] [4]


01.Œk’ì/“²fi¡*

AR(1) y t = φy t 1 + ɛ t, ɛ t N(0, σ 2 ) 1. Mean of y t given y t 1, y t 2, E(y t y t 1, y t 2, ) = φy t 1 2. Variance of y t given y t 1, y t

Table 1 Experimental conditions Fig. 1 Belt sanded surface model Table 2 Factor loadings of final varimax criterion 5 6

0

2017 (413812)

05_藤田先生_責

kubostat2018d p.2 :? bod size x and fertilization f change seed number? : a statistical model for this example? i response variable seed number : { i

2 ( ) i

H ( Competition ) 2 Bulmer Erickson 1971, Case 1999 Park 1954, Case 1999 Brown and Rothery Argentine ants > Harvester an

AtCoder Regular Contest 073 Editorial Kohei Morita(yosupo) A: Shiritori if python3 a, b, c = input().split() if a[len(a)-1] == b[0] and b[len(

FAX-760CLT

LLG-R8.Nisus.pdf

kubostat2017c p (c) Poisson regression, a generalized linear model (GLM) : :


Transcription:

Dirichlet Process : joint work with: Max Welling (UC Irvine), Yee Whye Teh (UCL, Gatsby) http://kenichi.kurihara.googlepages.com/miru_workshop.pdf 1 /40 MIRU2008 :

Dirichlet process mixture Dirichlet process mixture 2 /40 MIRU2008 :

? 3 /40 MIRU2008 :

Non-parametric Bayesian Model for Spectral Clustering etric Bayes, spectral clustering, probabilistic model Abstract dy the problem of searching for the r of clusters, k, in clustering. In clustering applications, spectral clushas achieved great success. Follows success, we consider an extension of l clustering based on a non-parametric an approach which gives an elegant sofor model selection, i.e. choosing k. In linkage analysis lar, we use the Dirichlet process (DP). t propose a generative model for specstering to apply the DP. We then show relaxed greedy maximum likelihood esn for the model is in fact equivalent to l clustering. Based on the generative we derive a non-parametric Bayesian for spectral clustering using the DP. mental results show that the proposed k-means spectral clustering 4 /40 MIRU2008 : Figure 3: Typical results for BKM for various values of τ = 0.1, 0.5, 2. The tru DP Gaussian mixture Proposed algorithm to ten. In these 30 plots, BKM found eight, nine and 30ten clusters respectively. Som too small or too 15 large to be visible. 0-15 Dirichlet Process Mixture -30 9000-30 -15 0 15 30 8000 Figure 7000 1. Typical clustering results by the Dirichlet process Gaussian 6000 mixture model (left) and the proposed algorithm 4000 3000-30 -30-15 0 15 30 (right). 5000 The former discovered 10 Gaussians, and the latter correctly discovered 3 clusters. 2000 clustering algorithms even when the distribution of 1000 data can not be captured by usual distributions, e.g. Gaussian SSSSSSSSSSSSSSSSNSSSSSNSNNNNNNNNNNNSNNNSNSNNNNNNNN or multinomial. Largely speaking, there are 15 0-15

( ) ( ) Dirichlet process EM-like MCMC 5 /40 MIRU2008 :

Dirichlet process mixture Dirichlet process mixture 6 /40 MIRU2008 :

7 /40 MIRU2008 :

7 /40 MIRU2008 :

? z θ xi X: zi = 1 xk θ1 2 zk = 2 xj xl zj = 1 1 θ2 zl = 2 8 /40 MIRU2008 :

(Z, θ) = argmax log p(x Z,θ) xi X: zi = 1 xk θ1 2 zk = 2 xj xl zj = 1 1 θ2 zl = 2 9 /40 MIRU2008 :

(MCMC) 10/40 MIRU2008 :

Z=argmax p(x,z,θ) θ=argmax p(x,z,θ) q(z) p(x,z,θ) θ=argmax Eq(Z)[ log p(x,z,θ)] q(z) exp Eq(θ)[ log p(x,z,θ)] q(θ) exp Eq(Z)[ log p(x,z,θ)] 11/40 MIRU2008 :

Markov Chain Monte Carlo p(z X) Metropolis-Hastings Gibbs sampler ( ) %&! %&"' %&" %&#' %&# %&$' %&$ %&%' %!!!"!#!$ % $ # "! 12/40 MIRU2008 :

Dirichlet process mixture Dirichlet process mixture 13/40 MIRU2008 :

(Z, θ) = argmax log p(x Z,θ) iterated conditional mode Z=argmax log p(x Z,θ) θ=argmax log p(x Z,θ) θ1 zi = 1 zk = 2 zj = 1 1 θ2 zl = 2 14/40 MIRU2008 :

log p(x Z, θ) = 1 2 n x i θ zi 2 + constant i=1 z i = argmax log p(x, Z, θ) = argmax 1 2 x i θ zi 2 θ j = argmax log p(x, Z, θ) = 1 n j i;z i =j x i θ1 zj = 1 1 zi = 1 θ2 zk = 2 zl = 2 15/40 MIRU2008 :

: (Z, θ) = argmax p(x Z,θ) iterated conditoinal mode k-means z i = argmax x i θ zi 2 θ j = 1 x i n j i;z i =j θ1 zj = 1 1 zi = 1 θ2 zk = 2 zl = 2 16/40 MIRU2008 :

: 3 : 17/40 MIRU2008 :

K? K K Dirichlet process mixture K 20 0!20!40!60!60!40!20 0 20 20 0!20!40!60!60!40!20 0 20 20 0!20!40 K=3 K=4 K=5!60!60!40!20 0 20 18/40 MIRU2008 :

Dirichlet process mixture Dirichlet process mixture 19/40 MIRU2008 :

Dirichlet Process Mixture K Dirichlet Process Mixture (DPM) K [Ferguson 73, Antoniak 74] K? 20/40 MIRU2008 :

21 K? ( ) e.g. (DPM) /40 MIRU2008 :

DPM p(z,k) (=p(z)) 3 x1, x2, x3 : p(x Z) ( :) e.g. (DPM) 22/40 MIRU2008 :

DPM 23/40 MIRU2008 :

DPM 23/40 MIRU2008 :

DPM 23/40 MIRU2008 :

DPM 23/40 MIRU2008 :

Chinese Restaurant Process Dirichlet process 1 4 2 6 7... 10 3 8 9 5 p(z N [z 1...z N 1 ]) = N N c α+n 1 α α+n 1 (Nc N > 0; Z N is an existing cluster.) (Nc N = 0; Z N is a new cluster.) 24/40 MIRU2008 :

DPM? e.g. (DPM) Dirichlet process mixture (DPM) Dirichlet p(z K) + Poisson p(k) etc. DPM (MCMC) Dirichlet + Poisson 25/40 MIRU2008 :

DPM consistency x1, x2, x3 consistency p(z2) + p(z5) = p([(x1,x2)]) p(z2)=α/(1+α)(2+α); p(z5) = 2/(1+α)(2+α) p([(x1,x2)]) = 1/(1+α) 26/40 MIRU2008 :

K DPM K DPM p(z,k) DPM DPM consistency 27/40 MIRU2008 :

note: 1 2 3 4 5 K 1 2 3 4 5 K 28/40 MIRU2008 :

Dirichlet process mixture Dirichlet process mixture 29/40 MIRU2008 :

iterated conditional mode EM MCMC Gibbs sampler 30/40 MIRU2008 :

iterated conditional mode EM MCMC Gibbs sampler 31/40 MIRU2008 :

Markov Chain Monte Carlo p(z X) Metropolis-Hastings Gibbs sampler ( ) %&! %&"' %&" %&#' %&# %&$' %&$ %&%' %!!!"!#!$ % $ # "! 32/40 MIRU2008 :

Gibbs Sampler ( ) Z = (z1, z2,..., zn) zi p(zi Z-i, X) p(z X) p(zi Z-i, X) Metroplis-Hastings zi p(zi Z-i, X) p(x,z) (DPM OK ) 33/40 MIRU2008 :

: θ={µ,σ}: µ Σ µ Σ Wishart θ 34/40 MIRU2008 :

DPM Gibbs Sampler 1. p(x Z,θ) e.g. 2. p(θ) p(z) DPM 3. p(x,z) = dθ p(x,z,θ) ( ) 4. zi p(zi Z-i, X) p(x,z) 35/40 MIRU2008 :

MNIST 88 Gibbs sampler (GS) 36/40 MIRU2008 :

!" #" $%" )!" #" $%" )!('#!&!('#!&!&'% Latent Dirichlet!&'! Allocation!&'&!&'#!* Gibbs sampler +,-./,!&'! "!""" #""" $%"""!&'%!&'%!&'!!&'!!&'(!&'#!&'(!#!&'# "!""" #""" $%""" *+,-.+!# "!""" #""" $%"""!&'! *+,-.+ GHDP 100 GHDP 1 GLDA CVHDP CVLDA VLDA!&'&!&'( 37/40 MIRU2008 :

DPM? K (DPM ) DPM p(z,k) DPM DPM consistent Gibbs sampler non-dpm () 38/40 MIRU2008 :

DPM hierarchical Dirichlet process HDP-LDA, HDP-HMM, HDP-PCFG 39/40 MIRU2008 :

Dirichlet process mixture Dirichlet process mixture 40/40 MIRU2008 :