Vol. 48 No. 1 GTTM GTTM GTTM 3 GTTM 1 GTTM GTTM GTTM 5),6) 7) 9) 10),11) GTTM 1 GTTM 2 (1) (2) (1) GTTM (2) GTTM exgttm exgttm 4),12) 14) GTTM 1

Similar documents
IPSJ SIG Technical Report Vol.2011-MUS-91 No /7/ , 3 1 Design and Implementation on a System for Learning Songs by Presenting Musical St

Vol. 43 No. 2 Feb. 2002,, MIDI A Probabilistic-model-based Quantization Method for Estimating the Position of Onset Time in a Score Masatoshi Hamanaka

音楽とOR(片寄)

IPSJ SIG Technical Report Vol.2012-MUS-96 No /8/10 MIDI Modeling Performance Indeterminacies for Polyphonic Midi Score Following and

IPSJ SIG Technical Report Pitman-Yor 1 1 Pitman-Yor n-gram A proposal of the melody generation method using hierarchical pitman-yor language model Aki

( ) [1] [4] ( ) 2. [5] [6] Piano Tutor[7] [1], [2], [8], [9] Radiobaton[10] Two Finger Piano[11] Coloring-in Piano[12] ism[13] MIDI MIDI 1 Fig. 1 Syst

sigmusdemo.dvi

IPSJ SIG Technical Report Vol.2012-DCC-1 No /5/18 1,a) 2,b) 3,c) 4,d) ( ) Discussion Mining with Music Theory Being Applied to Analysis of Meet

IPSJ SIG Technical Report Vol.2016-CE-137 No /12/ e β /α α β β / α A judgment method of difficulty of task for a learner using simple

Vol.55 No (Jan. 2014) saccess 6 saccess 7 saccess 2. [3] p.33 * B (A) (B) (C) (D) (E) (F) *1 [3], [4] Web PDF a m

GPGPU

258 5) GPS 1 GPS 6) GPS DP 7) 8) 10) GPS GPS ) GPS Global Positioning System

1 1 CodeDrummer CodeMusician CodeDrummer Fig. 1 Overview of proposal system c

A Feasibility Study of Direct-Mapping-Type Parallel Processing Method to Solve Linear Equations in Load Flow Calculations Hiroaki Inayoshi, Non-member

Vol. 48 No. 4 Apr LAN TCP/IP LAN TCP/IP 1 PC TCP/IP 1 PC User-mode Linux 12 Development of a System to Visualize Computer Network Behavior for L

1 Fig. 1 Extraction of motion,.,,, 4,,, 3., 1, 2. 2.,. CHLAC,. 2.1,. (256 ).,., CHLAC. CHLAC, HLAC. 2.3 (HLAC ) r,.,. HLAC. N. 2 HLAC Fig. 2

untitled

Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels).

THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE.

( )

EQUIVALENT TRANSFORMATION TECHNIQUE FOR ISLANDING DETECTION METHODS OF SYNCHRONOUS GENERATOR -REACTIVE POWER PERTURBATION METHODS USING AVR OR SVC- Ju

IPSJ SIG Technical Report Vol.2010-CVIM-170 No /1/ Visual Recognition of Wire Harnesses for Automated Wiring Masaki Yoneda, 1 Ta

Vol.54 No (July 2013) [9] [10] [11] [12], [13] 1 Fig. 1 Flowchart of the proposed system. c 2013 Information

自然言語処理16_2_45

& Vol.5 No (Oct. 2015) TV 1,2,a) , Augmented TV TV AR Augmented Reality 3DCG TV Estimation of TV Screen Position and Ro

Q [4] 2. [3] [5] ϵ- Q Q CO CO [4] Q Q [1] i = X ln n i + C (1) n i i n n i i i n i = n X i i C exploration exploitation [4] Q Q Q ϵ 1 ϵ 3. [3] [5] [4]

2017 (413812)

gengo.dvi

IPSJ SIG Technical Report Vol.2009-DPS-141 No.23 Vol.2009-GN-73 No.23 Vol.2009-EIP-46 No /11/27 t-room t-room 2 Development of

Vol. 48 No. 3 Mar PM PM PMBOK PM PM PM PM PM A Proposal and Its Demonstration of Developing System for Project Managers through University-Indus

IPSJ SIG Technical Report Vol.2012-CG-148 No /8/29 3DCG 1,a) On rigid body animation taking into account the 3D computer graphics came

2) TA Hercules CAA 5 [6], [7] CAA BOSS [8] 2. C II C. ( 1 ) C. ( 2 ). ( 3 ) 100. ( 4 ) () HTML NFS Hercules ( )

Vol.53 No (Mar. 2012) 1, 1,a) 1, 2 1 1, , Musical Interaction System Based on Stage Metaphor Seiko Myojin 1, 1,a

1 Web [2] Web [3] [4] [5], [6] [7] [8] S.W. [9] 3. MeetingShelf Web MeetingShelf MeetingShelf (1) (2) (3) (4) (5) Web MeetingShelf

B HNS 7)8) HNS ( ( ) 7)8) (SOA) HNS HNS 4) HNS ( ) ( ) 1 TV power, channel, volume power true( ON) false( OFF) boolean channel volume int

DPA,, ShareLog 3) 4) 2.2 Strino Strino STRain-based user Interface with tacticle of elastic Natural ObjectsStrino 1 Strino ) PC Log-Log (2007 6)

4.1 % 7.5 %

IPSJ SIG Technical Report An Evaluation Method for the Degree of Strain of an Action Scene Mao Kuroda, 1 Takeshi Takai 1 and Takashi Matsuyama 1

The copyright of this material is retained by the Information Processing Society of Japan (IPSJ). The material has been made available on the website

29 jjencode JavaScript

1: A/B/C/D Fig. 1 Modeling Based on Difference in Agitation Method artisoc[7] A D 2017 Information Processing

Juntendo Medical Journal

Vol. 42 No. SIG 8(TOD 10) July HTML 100 Development of Authoring and Delivery System for Synchronized Contents and Experiment on High Spe

Fig. 3 3 Types considered when detecting pattern violations 9)12) 8)9) 2 5 methodx close C Java C Java 3 Java 1 JDT Core 7) ) S P S

9_18.dvi

_念3)医療2009_夏.indd

[2] [21] [13] Heinrich Schenker ( ) (Vordergrund) (Reduction Hypothesis) (Mittelgrund) (Hindgrund) (Ursatz) [14] (Urlinie) 2 2 * [9], p

DEIM Forum 2009 C8-4 QA NTT QA QA QA 2 QA Abstract Questions Recomme

TF-IDF TDF-IDF TDF-IDF Extracting Impression of Sightseeing Spots from Blogs for Supporting Selection of Spots to Visit in Travel Sat

4. C i k = 2 k-means C 1 i, C 2 i 5. C i x i p [ f(θ i ; x) = (2π) p 2 Vi 1 2 exp (x µ ] i) t V 1 i (x µ i ) 2 BIC BIC = 2 log L( ˆθ i ; x i C i ) + q

2006 [3] Scratch Squeak PEN [4] PenFlowchart 2 3 PenFlowchart 4 PenFlowchart PEN xdncl PEN [5] PEN xdncl DNCL 1 1 [6] 1 PEN Fig. 1 The PEN

1., 1 COOKPAD 2, Web.,,,,,,.,, [1]., 5.,, [2].,,.,.,, 5, [3].,,,.,, [4], 33,.,,.,,.. 2.,, 3.., 4., 5., ,. 1.,,., 2.,. 1,,

1 1 tf-idf tf-idf i

第62巻 第1号 平成24年4月/石こうを用いた木材ペレット

1 4 4 [3] SNS 5 SNS , ,000 [2] c 2013 Information Processing Society of Japan

FIG 7 5) 7 FIG ) 7) 8) 9) 10) 11) 12) 3 18 Gymnastik 13) 1793 J. Ch. F. Guts Muths Gymnastik fuer die Juegend 1816 F. L. Jahn Turnkunst Rhythm

Vol. 42 No MUC-6 6) 90% 2) MUC-6 MET-1 7),8) 7 90% 1 MUC IREX-NE 9) 10),11) 1) MUCMET 12) IREX-NE 13) ARPA 1987 MUC 1992 TREC IREX-N

.,,, [12].,, [13].,,.,, meal[10]., [11], SNS.,., [14].,,.,,.,,,.,,., Cami-log, , [15], A/D (Powerlab ; ), F- (F-150M, ), ( PC ).,, Chart5(ADIns

IPSJ SIG Technical Report Vol.2011-EC-19 No /3/ ,.,., Peg-Scope Viewer,,.,,,,. Utilization of Watching Logs for Support of Multi-

untitled

1 [1, 2, 3, 4, 5, 8, 9, 10, 12, 15] The Boston Public Schools system, BPS (Deferred Acceptance system, DA) (Top Trading Cycles system, TTC) cf. [13] [

49148

2. Eades 1) Kamada-Kawai 7) Fruchterman 2) 6) ACE 8) HDE 9) Kruskal MDS 13) 11) Kruskal AGI Active Graph Interface 3) Kruskal 5) Kruskal 4) 3. Kruskal

わが国企業による資金調達方法の選択問題

IPSJ SIG Technical Report Secret Tap Secret Tap Secret Flick 1 An Examination of Icon-based User Authentication Method Using Flick Input for

Table 1. Reluctance equalization design. Fig. 2. Voltage vector of LSynRM. Fig. 4. Analytical model. Table 2. Specifications of analytical models. Fig

/ p p

Abstract This paper concerns with a method of dynamic image cognition. Our image cognition method has two distinguished features. One is that the imag

DEIM Forum 2009 E

2. Twitter Twitter 2.1 Twitter Twitter( ) Twitter Twitter ( 1 ) RT ReTweet RT ReTweet RT ( 2 ) URL Twitter Twitter 140 URL URL URL 140 URL URL

(1) i NGO ii (2) 112

1 OpenCL OpenCL 1 OpenCL GPU ( ) 1 OpenCL Compute Units Elements OpenCL OpenCL SPMD (Single-Program, Multiple-Data) SPMD OpenCL work-item work-group N

16_.....E...._.I.v2006

149 (Newell [5]) Newell [5], [1], [1], [11] Li,Ryu, and Song [2], [11] Li,Ryu, and Song [2], [1] 1) 2) ( ) ( ) 3) T : 2 a : 3 a 1 :

01ⅢⅣⅤⅥⅦⅧⅨⅩ一二三四五六七八九零壱弐02ⅢⅣⅤⅥⅦⅧⅨⅩ一二三四五六七八九零壱弐03ⅢⅣⅤⅥⅦⅧⅨⅩ一二三四五六七八九零壱弐04ⅢⅣⅤⅥⅦⅧⅨⅩ一二三四五六七八九零壱弐05ⅢⅣⅤⅥⅦⅧⅨⅩ一二三四五六七八九零壱弐06ⅢⅣⅤⅥⅦⅧⅨⅩ一二三四五六

IPSJ SIG Technical Report Vol.2009-DPS-141 No.20 Vol.2009-GN-73 No.20 Vol.2009-EIP-46 No /11/27 1. MIERUKEN 1 2 MIERUKEN MIERUKEN MIERUKEN: Spe

3. ( 1 ) Linear Congruential Generator:LCG 6) (Mersenne Twister:MT ), L 1 ( 2 ) 4 4 G (i,j) < G > < G 2 > < G > 2 g (ij) i= L j= N

,,,,., C Java,,.,,.,., ,,.,, i

Studies of Foot Form for Footwear Design (Part 9) : Characteristics of the Foot Form of Young and Elder Women Based on their Sizes of Ball Joint Girth

(3.6 ) (4.6 ) 2. [3], [6], [12] [7] [2], [5], [11] [14] [9] [8] [10] (1) Voodoo 3 : 3 Voodoo[1] 3 ( 3D ) (2) : Voodoo 3D (3) : 3D (Welc

3 1 Table 1 1 Feature classification of frames included in a comic magazine Type A Type B Type C Others 81.5% 10.3% 5.0% 3.2% Fig. 1 A co

Microsoft Word - toyoshima-deim2011.doc

Bull. of Nippon Sport Sci. Univ. 47 (1) Devising musical expression in teaching methods for elementary music An attempt at shared teaching

% 95% 2002, 2004, Dunkel 1986, p.100 1


Input image Initialize variables Loop for period of oscillation Update height map Make shade image Change property of image Output image Change time L

fiš„v8.dvi

, 3, STUDY ON IMPORTANCE OF OPTIMIZED GRID STRUCTURE IN GENERAL COORDINATE SYSTEM 1 2 Hiroyasu YASUDA and Tsuyoshi HOSHINO


早稲田大学現代政治経済研究所 ダブルトラック オークションの実験研究 宇都伸之早稲田大学上條良夫高知工科大学船木由喜彦早稲田大学 No.J1401 Working Paper Series Institute for Research in Contemporary Political and Ec

kut-paper-template2.dvi

17 Proposal of an Algorithm of Image Extraction and Research on Improvement of a Man-machine Interface of Food Intake Measuring System

Shonan Institute of Technology MEMOIRS OF SHONAN INSTITUTE OF TECHNOLOGY Vol. 38, No. 1, b9 199d8 1 * False Belief and Recognition of a Object

雇用不安時代における女性の高学歴化と結婚タイミング-JGSSデータによる検証-

.,,,.,,,,,.,,,, Inoue,.,,,,.,.,,.,,,.,.,,,.,,,,,.,,.,,.,,,.,,,,

Vol. 45 No Web ) 3) ),5) 1 Fig. 1 The Official Gazette. WTO A

‰gficŒõ/’ÓŠ¹

a) Extraction of Similarities and Differences in Human Behavior Using Singular Value Decomposition Kenichi MISHIMA, Sayaka KANATA, Hiroaki NAKANISHI a

情報処理学会研究報告 IPSJ SIG Technical Report Vol.2016-MUS-112 No /7/30 deepgttm-ii: ディープラーニングに基づく拍節構造分析器 1 浜中雅俊 2 平田圭二 3 東条敏 概要 : 本稿では, 音楽理論 Generative

DS0 0/9/ a b c d u t (a) (b) (c) (d) [].,., Del Barrio [], Pilato [], [].,,. [],.,.,,.,.,,.,, 0%,..,,, 0,.,.,. (variable-latency unit)., (a) ( DFG ).,

Transcription:

Vol. 48 No. 1 Jan. 2007 GTTM Generative Theory of Tonal Music GTTM GTTM GTTM GTTM exgttm exgttm exgttm Grouping Structure Generator Based on Music Theory GTTM Masatoshi Hamanaka, Keiji Hirata and Satoshi Tojo This paper describes a grouping system which segments a music piece into units such as phrases or motives, based on the Generative Theory of Tonal Music (GTTM). Previous melody segmentation methods have only focused on detecting local boundaries of melodies, while the grouping analysis of GTTM aims at building a hierarchical structure including melodic repetition as well as such local boundaries. However, as the theory consists of a number of structuring rules among which the priority is not given, groups are acquired only by the ad hoc order of rule application. To solve this problem, we propose a novel computational model exgttm in which those rules are reformalized for computer implementation. The main advantage of our approach is that we attach a weight on each rule as an adjustable parameter, which enables us to assign priority to the application of rules. In this paper, we show the process of grouping analysis by exgttm, and show the experimental results. 1. Generative Theory of Tonal Music GTTM 1) PRESTO Japan Science and Technology Agency NTT NTT Communication Science Laboratories Japan Advanced Institute of Science and Technology 1 GTTM 2) 4) GTTM 3 2 284

Vol. 48 No. 1 GTTM 285 2 GTTM GTTM 3 GTTM 1 GTTM GTTM GTTM 5),6) 7) 9) 10),11) GTTM 1 GTTM 2 (1) (2) (1) GTTM (2) GTTM exgttm exgttm 4),12) 14) GTTM 15) GTTM 12) 2 20) 2 GTTM GTTM GTTM exgttm 3 exgttm 4 5 2. GTTM GTTM 4

286 Jan. 2007 (b) 2 GPR3 (a) (b) (c) (d) 4 2.1 GPR Fig. 1 1 Simple example of time-span tree. 2 Fig. 2 Grouping structure, metrical structure and timespan tree. 4 /2 /1 /2 /4 2 1 (a) <---> 1(b) 2 1 C4 GTTM 2 4 3 16) 19) 2 Grouping Preference Rule; GPR GPR GPR1 GPR2 GPR3 GPR4 GPR2 3 GPR5 GPR6 GPR7 7 GPR2 (a)/ GTTM 1 GTTM 2 2.1.1 GTTM (i) (ii) (ii) (i) (i) (ii) GTTM GPR6 GTTM (i) (ii) 2.1.2 GTTM

Vol. 48 No. 1 GTTM 287 Fig. 3 3 Simple example of conflict between rules. 2.1.3 3 GPR3a a GPR6 b 4 8 1 GPR1 GPR3a GPR6 2.2 exgttm exgttm 2.2.1 exgttm 2 exgttm 1 exgttm 3 1 GTTM GPR2a D 2a 1 0 GPR5 D 5 0 1 2 GTTM GTTM 2.1.3 GTTM exgttm extended-gttm GTTM executable-gttm GTTM 3 GTTM GPR6 GTTM exgttm 3 exgttm 2 21) 2 2.2.2 (1) 1 (2) (3) (4) (5) (6) 2 (7) (4) (5) (6) 3. exgttm 4 MusicXML 22) GroupingXML GTTM homophony

288 Jan. 2007 4 Fig. 4 Processing flow of the system. monophony 3.1 GPR R R {1, 2a, 2b, 3a, 3b, 3c, 3d, 4, 5, 6} 10 D R (i) 0 D R (i) 1 R {1, 2a, 2b, 3a, 3b, 3c, 3d, 4, 5, 6} 1 15 5 10 GPR7 time-span and prolongational stability GPR7 3.1.1 MusicXML 6 6 ρ i ι i η i δ i α i β i 6 τ i i ε i i 1 Table 1 15 Fifteen adjustable parameters. S R R {2a, 2b, 3a, 3b, 3c, 3d, 4, 5, 6} (0 S R 1) (19) (23) ˆσ GPR5 (0 ˆσ 0.1) (14) W m GPR6 (0 W m 1) (15) W l GPR6 (0 W l 1) (15) W s GPR6 i (0 W s 1) (16) T 4 GPR4 GPR 2 3 GPR4 (0 T 4 1) (13) T low (0 T low 1) (20) ˆε i i f i i υ i i 4 MIDI { τ i+1 ˆε i if τ i+1 ˆε i 0 ρ i = (1) ι i = τ i+1 τ i (2) η i = f i+1 f i (3) δ i = υ i+1 υ i (4) α i = ε i+1 τ i+1 ε i τ i ˆε i+1 τ i+1 ˆε i τ i (5) β i = ι i+1 ι i (6) 3.1.2 GPR2 3 4 GPR2 3 4 4 n 1 n 2 n 3 n 4 i i i +1 D R (i) =1D R (i) =0 GPR2a/ n 2 n 3

Vol. 48 No. 1 GTTM 289 Fig. 5 5 GPR Relationship between paremeters and GPRs. GPR3an 2 n 3 n 1 n 2 n 3 n 4 GPR3a 1 if η i 1 < η i and D 3a (i) = η i > η i+1 ) (9) Fig. 6 6 Calculation of basic parameters. n 1 n 2 n 3 n 4 GPR2a { 1 if ρ i 1 <ρ i and ρ i >ρ i+1 D 2a (i) = (7) GPR2b n 2 n 3 n 1 n 2 n 3 n 4 GPR2b { 1 if ι i 1 <ι i and ι i >ι i+1 D 2b (i) = (8) GPR3b n 2 n 3 n 1 n 2 n 3 n 4 GPR3b 1 if δ i 1 =0, δ i 0, and D 3b (i) = δ i+1 =0) (10) GPR3cn 2 n 3 n 1 n 2 n 3 n 4 GTTM 1) GPR3c 1 if α i 1 =0, α i 0, and D 3c (i) = α i+1 =0 (11) GPR3d n 2 n 3 n 1 n 2 n 3 n 4

290 Jan. 2007 GPR3d 1 if β i 1 =0, β i 0, and D 3d (i) = β i+1 =0 (12) GPR4 GPR2 3 GPR2 3 GPR4 P ρ (i) P ι (i) P η (i) P δ (i) P α (i) P β (i) GPR2a 2b 3a 3b 3c 3d T 4 0 T 4 1 GPR2a 2b 3a 3b 3c 3d 1 if max(p ρ (i),p ι (i),p η (i), D 4 (i) = P δ (i),p α (i),p β (i))>t 4 (13) ρ i /(ρ i 1 + ρ i + ρ i+1 ) P ρ (i) = if ρ i 1 + ρ i + ρ i+1 > 0 P ι (i) =ι i /(ι i 1 + ι i + ι i+1 ) η i /( η i 1 + η i + η i+1 ) P η (i) = if η i 1 + η i + η i+1 > 0 δ i /(δ i 1 + δ i + δ i+1 ) P δ (i) = if δ i 1 + δ i + δ i+1 > 0 α i /(α i 1 + α i + α i+1 ) P α (i) = if α i 1 + α i + α i+1 > 0 β i /(β i 1 + β i + β i+1 ) P β (i) = if β i 1 + β i + β i+1 > 0 3.1.3 GPR5 GPR5 symmetry GTTM 2 2 7 D 5 (i) Fig. 7 Degree of symmetry D 5 (i). D 5 (i) σ σ 4 1 7 (a) a D 5 (i) b D 5 (i) 7(b) σ 0 D 5 (i) σ { } D 5 (i) = 1 (τi τ mid ) 2 exp (14) 2πσ 2σ 2 τ mid = ε end τ start 2 start end start end D 5 (i) σ

Vol. 48 No. 1 GTTM 291 8 Fig. 8 Similarity of parallel phrases. ˆσ ˆσ (ε end τ start )=σ 3.1.4 GPR6 GPR6 i D 6 (i) 0 D 6 (i) 1 D 6 (i) i r j i j r GTTM 2 D 6 (i) W m W l W s i W m W l W s 0 1 21) 8 2 7 6 6/7 4/6 exgttm r 1 exgttm 4 1 m 1 m r [m, m + r) m + r N O P N(m) = [m, m +1) O(m, n) = [m, m +1) [n, n +1) r r 1 N(m, r) = N(m + j) j=0 r 1 O(m, n, r) = O(m + j, n + j) j=0 [m, m + r) [n, n + r) P (m, n, r) [m, m + r) [n, n + r) { O(m, n, r) G(m, n, r) = N(m, r)+n(n, r) (1 W m) } P (m, n, r) + O(m, n, r) W m r W l (15) L G(m, n, r) 1 m n L r +1 1 r L G(m, n, r) =0 r W l W l 0 1 W l > 0 r W l 0 1

292 Jan. 2007 i i b e t head(m) [m, m +1) i i tail(m) [m, m +1) beat(i) i [m, m +1) m b(i) (i = head(beat(i)) i tail(beat(i))) e(i) (i head(beat(i)) i = tail(beat(i))) t(i) (i = head(beat(i)) i = tail(beat(i))) i A(i) = G(beat(i),n,r) (1 W s ) if b(i) holds and N(n) 1 G(beat(i) r, n r, r) W s L/2 L if e(i) holds and N(n) 1 G(beat(i),n,r) (1 W s ) n=1 r=1 + G(beat(i) r, n r, r) W s if t(i) holds and N(n) 1 (16) 2 L 1/2 A(i) N(1,L) A max = max(a(1),a(2),,a(n(1,l)) D 6 (i) =A(i)/A max (17) D 6 (i) i D 6 (i) 9 3.1.5 GPR1 GPR1 GPR1 D 1 (i) =1 9 D 6 (i) Fig. 9 Degree of parallelism D 6 (i). 10 B low (i) Fig. 10 Low-level strength of boundary B low (i). D 1 (i) =0 10 B low (i) 0 1 B low (i) D 1 (i) i 1 1 if B low (i 1) B low (i), B low (i) B low (i +1), D 1 (i) = (18) and D 1 (i 1) = 0

Vol. 48 No. 1 GTTM 293 D high (i) =D low (i) B high (i) (22) D R (i) S R B high (i) = max i R ( R D R (i ) S R ) (23) R {2a, 2b, 3a, 3b, 3c, 3d, 4, 5, 6} i 5 4. Fig. 11 11 Construction of hierarchical grouping structure. B low (i) = max i D R (i) S R R ( R D R (i ) S R ) (19) R =(2a, 2b, 3a, 3b, 3c, 3d, 6) 3.2 D 1 (i) D 2a (i) D 2b (i) D 3a (i) D 3b (i) D 3c (i) D 3d (i) D 6 (i) T low i D low (i) =1 D low (i) =0 B low (i) (18) 1 if B low (i) >T low and D low (i) = D i (1) = 1 (20) 3.3 D low (i) D 1 (i) D 2a (i) D 2b (i) D 3a (i) D 3b (i) D 3c (i) D 3d (i) D 4 (i) D 5 (i) D 6 (i) B high (i) 0 1 B high (i) B low (i) D 4 (i) D 5 (i) î 11 B high (i) î = argmax i D high (i) (21) P 0 P 1 R 0 R 1 P R P = (24) R = (25) 4.1 GTTM GTTM 1 8 100 GTTM 4.1.1 100 Finale 23) MusicXML Dolet 3.1.1 MusicXML τ i ε i f i MusicXML ˆε i υ i 8 8

294 Jan. 2007 13 GroupingXML Fig. 13 GroupingXML viewer. 12 Fig. 12 GroupingXML GroupingXML. 1 0.8 ˆε i υ i 1 0.8 4.1.2 1 GroupingXML GroupingXML Xpointer 24) Xlink 25) MusicXML 12 3 GTTM 4.2 1 100 1 10 13 GroupingXML GroupingXML 10 14 GUI Fig. 14 GUI for configuring parameters. 14 GroupingXML S R (R {2a, 2b, 3a, 3b, 3c, 3d, 4, 5, 6}) W m W s W l T 4 T low 0 1 0.1 ˆσ 0.01 0.10 0.01 P 0.77 R 0.79 15 100 0.9 51 0.9 55 4.3

Vol. 48 No. 1 GTTM 295 (b) 4 5 6 7 GPR2b 4 5 D 6 (i) op. 23 17 17 (a) 15 P R Fig. 15 Histgram of precision and recall. 16 K. 331 Fig. 16 Analysis of Mozart Sonata K. 331. 4.3.1 2 2.2.1 1 GTTM K. 331 16 4 5 5 6 2 S 2a S 2b S 3a S 2a S 2b S 3a D 6 (i) (a) 17 (b) 1 18 GPR1 2 4.3.2 19 20 100 1 GPR5 2 21 3 1 3 4 6 7 9 1 1 3 4 6

296 Jan. 2007 17 op. 23 Fig. 17 Analysis of Chopin, Ballade, op. 23. 18 Fig. 18 Analysis of Bizet, L Arlesienne, Farandole. 19 Fig. 19 Numbers of groups in correct data and system outputs. 1 1 9 1 20 Fig. 20 Numbers of grouping hierarchies in correct data and system outputs. 1 6 7 9 3 1

Vol. 48 No. 1 GTTM 297 21 Fig. 21 Analysis of Tchaikovsky, Album pour enfants, Waltz. 22 2 (a) (b) Fig. 22 Analysis of two songs which has same parameter sets. (a) Tchaikovsky, The Nutcracker, March. (b) Elgar, Pomp and Circumstance Marches, op. 39. No.1 58 58 0.76 0.75 58 42 0.79 0.83 3 4.3.3 22 2 S 5 S 6 5. exgttm 3 exgttm GTTM exgttm GTTM 26)

298 Jan. 2007 Web CGI 100 GTTM GPR7 1) Lerdahl, F. and Jackendoff, R.: A Generative Theory of Tonal Music, The MIT Press, Cambridge (1983). 2) Cooper, G. and Meyer, L.B.: The Rhythmic Structure of Music, The University of Chicago Press, Chicago (1960). 3) Narmour, E.: The Analysis and Cognition of Basic Melodic Structure, The University of Chicago Press, Chicago (1990). 4) Temperley, D.: The Cognition of Basic Musical Structures, The MIT Press, Cambridge (2001). 5) GTTM Vol.43, No.2, pp.1512 1526 (1992). 6) Hirata, K. and Aoyagi, T.: Computational Music Representation on the Generative Theory of Tonal Music and the Deductive Object- Oriented Database, Computer Music Journal, Vol.27, No.3, pp.73 89 (2003). 7) Todd, N.: A Model of Expressive Timing in Tonal Music, Musical Perception, Vol.3, No.1, pp.33 58 (1985). http://staff.aist.go.jp/m.hamanaka/atta/grouping.html 8) Widmer, G.: Understanding and Learning Musical Expression, Proc. ICMC1993, pp.268 275 (1993). 9) Hirata, K. and Hiraga, R.: Ha-Hi-Hun plays Chopin s Etude, Working Notes of IJCAI-03 Workshop on Methods for Automatic Music Performance and their Applications in a Public Rendering Contest, pp.72 73 (2003). 10) GTTM 2002-MUS-46, pp.29 36 (2002). 11) Hirata, K. and Matsuda, S.: Interactive Music Summarization based on Generative Theory of Tonal Music, Journal of New Music Research, Vol.32, No.2, pp.165 177 (2003). 12) Stammen, D.R. and Pennycook, B.: Real-time Segmentation of Music using an Adaptation of Lerdahl and Jackendoff s Grouping Principles, Proc. ICMPC1994, pp.269 270 (1994). 13) Cambouropoulos, E.: The Local Boundary Detection Model (LBDM) and its application in the study of expressive timing, Proc. ICMC2001, pp.290 293 (2001). 14) Ferrand, M., Nelson, P. and Wiggins, G.: Memory and Melodic Density: A Model for Melody Segmentation, Proc. XIV CIM 2003, pp.95 98 (2003). 15) Hamanaka, M. and Hirata, K.: Applying Voronoi Diagrams in the Automatic Grouping of Polyphony, Information Technology Letters, Vol.1, No.1, pp.101 102 (2002). 16) Hamanaka, M., Hirata, K. and Tojo, S.: Automatic Generation of Grouping Structure based on the GTTM, Proc. ICMC2004, pp.141 144 (2004). 17) ATTA exgttm 2005-MUS-61, pp.19 26 (2005). 18) Hamanaka, M., Hirata, K. and Tojo, S.: Automatic Generation of Metrical Structure based on the GTTM, Proc. ICMC2005, pp.53 56 (2005). 19) Hamanaka, M., Hirata, K. and Tojo, S.: ATTA: Automatic Time-span Tree Analyzer based on Extended GTTM, Proc. ISMIR2005, pp.358 365 (2005). 20) Nord, T.: Toward Theoretical Verification: Developing a Computer Model of Lerdahl and Jackendoff s Generative Theory of Tonal Music, Ph.D. Thesis, The University of Wisconsin, Madison (1992). 21) Hewlett, W.B. (Ed.): Melodic Similarity: Concepts, Procedures, and Application, Computing

Vol. 48 No. 1 GTTM 299 in Musicology, Vol.11, The MIT press, Cambridge (1998). 22) Recordare L.L.C.: MusicXML 1.1 Tutorial (2006). http://www.recordare.com/xml/ musicxml-tutorial.pdf 23) Finale: PG Music Inc. (2006). http://www.pgmusic.com/finale.htm 24) W3C, XML Pointer Language (XPointer) (2002). http://www.w3.org/tr/xptr/ 25) W3C, XML Linking Language (XLink) Version 1.0 (2001). http://www.w3.org/tr/xlink/ 26) Heikki, V.: Lerdahl and Jackendoff Revisited (2000). http://www.cc.jyu.fi/heivalko/ articles/lehr jack.htm ( 18 5 7 ) ( 18 10 3 ) 2003 2003 2004 PD 2004 2004 2005 NICI 2001 2001 SCI 5th World Multiconference on Systemics Cybernetics and Informatics in Art 2003 2005 ICMC2005 Best Paper Award Journal of New Music Research Distinguished Paper Award 1987 NTT 1990 1993 ICOT 13 15 t-room 1981 1983 1986 1988 1995 2000 1997 1998 ACL Folli