Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

Similar documents
50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2

i

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

Gmech08.dvi

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

( : December 27, 2015) CONTENTS I. 1 II. 2 III. 2 IV. 3 V. 5 VI. 6 VII. 7 VIII. 9 I. 1 f(x) f (x) y = f(x) x ϕ(r) (gradient) ϕ(r) (gradϕ(r) ) ( ) ϕ(r)

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n


(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

The Physics of Atmospheres CAPTER :

TOP URL 1

untitled

Note.tex 2008/09/19( )


A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

Gmech08.dvi



Part () () Γ Part ,


ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π

4‐E ) キュリー温度を利用した消磁:熱消磁

Quz Quz

2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

notekiso1_09.dvi

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

46 4 E E E E E 0 0 E E = E E E = ) E =0 2) φ = 3) ρ =0 1) 0 2) E φ E = grad φ E =0 P P φ = E ds 0



Untitled

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

pdf

untitled

TOP URL 1

液晶の物理1:連続体理論(弾性,粘性)

70 : 20 : A B (20 ) (30 ) 50 1

LLG-R8.Nisus.pdf


18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

l µ l µ l 0 (1, x r, y r, z r ) 1 r (1, x r, y r, z r ) l µ g µν η µν 2ml µ l ν 1 2m r 2mx r 2 2my r 2 2mz r 2 2mx r 2 1 2mx2 2mxy 2mxz 2my r 2mz 2 r

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

,,..,. 1

all.dvi

dynamics-solution2.dvi

Chap11.dvi

TOP URL 1

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

sec13.dvi

高校生の就職への数学II

B line of mgnetic induction AB MN ds df (7.1) (7.3) (8.1) df = µ 0 ds, df = ds B = B ds 2π A B P P O s s Q PQ R QP AB θ 0 <θ<π

量子力学 問題

1 1 3 ABCD ABD AC BD E E BD 1 : 2 (1) AB = AD =, AB AD = (2) AE = AB + (3) A F AD AE 2 = AF = AB + AD AF AE = t AC = t AE AC FC = t = (4) ABD ABCD 1 1

『共形場理論』

振動と波動

all.dvi

f (x) x y f(x+dx) f(x) Df 関数 接線 x Dx x 1 x x y f f x (1) x x 0 f (x + x) f (x) f (2) f (x + x) f (x) + f = f (x) + f x (3) x f


77

/Volumes/NO NAME/gakujututosho/chap1.tex i

II 2 II

meiji_resume_1.PDF

2.4 ( ) ( B ) A B F (1) W = B A F dr. A F q dr f(x,y,z) A B Γ( ) Minoru TANAKA (Osaka Univ.) I(2011), Sec p. 1/30

c y /2 ddy = = 2π sin θ /2 dθd /2 [ ] 2π cos θ d = log 2 + a 2 d = log 2 + a 2 = log 2 + a a 2 d d + 2 = l

R = Ar l B r l. A, B A, B.. r 2 R r = r2 [lar r l B r l2 ]=larl l B r l.2 r 2 R = [lar l l Br ] r r r = ll Ar l ll B = ll R rl.3 sin θ Θ = ll.4 Θsinθ

( ) ,

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)


2011de.dvi

2000年度『数学展望 I』講義録

Z: Q: R: C:

t θ, τ, α, β S(, 0 P sin(θ P θ S x cos(θ SP = θ P (cos(θ, sin(θ sin(θ P t tan(θ θ 0 cos(θ tan(θ = sin(θ cos(θ ( 0t tan(θ


x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

29

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

TOP URL 1

all.dvi

( )

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

A

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

Transcription:

7 -a 7 -a February 4, 2007 1. 2. 3. 4. 1. 2. 3. 1

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e z (2) Jacobian J = r 2 sin θ dv = dxdydz = J drdθdφ = r 2 sin θdrdθdφ x 2 + y 2 = r 2 sin θ Gauss Q = r 3 sin 2 ddφ = r 3 dr sin 2 θdθ dφ = r4 4 ɛ 0 E ds = 4πɛr 2 E ( π 2 + 1 ) 2π = π (2π + 1) r4 4 8 E = 2π + 1 32ɛ 0 r 2 e r 2

A = G M e r 2 r r M e, R e A(r, θ, φ) = 1 r 2 (r 2 A r ) r + 1 (sin θa θ ) + 1 (A φ ) r sin θ θ r sin θ φ r M = (r/r e ) 3 M e A = G r 3 R 3 e M e r 2 e r = G rm e Re 3 e r A = GM e r 3 Rer 3 2 r = 3GM e Re 3 G = (4πτ) 1 3GM e R 3 e = 3M e 4πR 3 eτ = M e 4 3 πr3 eτ = ρ e τ ρ 0 τ ɛ 1 Gauss r = R e τ A ds = 4πτRe 2 M e 4πτRe 2 = M e 1 (graviton) 3

Ampère Ampère ( ) E B ds = µ 0 i + ɛ 0 ds t (1) (2)i. a ii. (1) xy x x z y = B(z) Ampère a ABCD{ AB CD y BC DA z AB CD 0 Ampère BC DA {B(z 1 ) B(z 2 )}a (B(z 1 ) B(z 2 ))a = 0 B(z 1 ) = B(z 2 ) = B i (B(z 1 ) B(z 2 ))a = µ 0 ia 2aB = µ 0 ia B = µ 0 i/2 (2)i. r r B(r) I Ampère 2πrB(r) = µ 0 I... B(r) = µ 0I 2πr { µ0i 2πr 0 B = e θ r a 0 r < a 2 ii. 0 I/r 2... B = { µ0 I 2πr e θ µ 0 I 2πr e 3 θ r a r < a 2 4

S h dq V dq h S V (1) (2) Q (3) (2) (1) K = dqv (2) E Gauss 3... E ds = ES = Q E = Q S e z Φ V Φ = E ds = Qh S = V... Q = SV h (3) q ( K = V qh ) dq S 3 5

q = Q U lost = Q 0 ( V qh ) dq = QV Q2 h S 2S = 1 2 QV W = QV U c U c = QV 1 2 QV = 1 2 QV = 1 2 CV 2 4 4 C Q/V 6

a b(b > a) +q, q, a < r < b r, S E nda = 4πr 2 E, q V ρ ɛ 0 dv = q ɛ 0 2 4πr 2 E = q ɛ 0...E = q 4πr 2 ɛ 0,ab V, b, C V = = = V = b q a 4πr 2 dr ɛ 0 [ ] b q 1 4πɛ 0 r a ( q 1 4πɛ 0 a 1 ) b q 4πɛ 0 ( ) 1 a C = q V = 4πɛ 0 a 7

Q a ɛ C = 4πɛ 0 a C = 4πɛa U = Q2 2C, U = Q2 2C ( U U = Q2 2C Q2 2C = Q2 1 1 ) 8πa ɛ 0 ɛ 8

d S ±Q ɛ F = 1 2 ɛe2 S E = Q ɛs F = 1 2 ɛ ( Q ɛs ) 2 S = 1 Q 2 2 ɛs ɛ ɛ 0 F 0 ɛ > ɛ 0 F < F 0 Q 2 F 0 = 1 2 ɛ 0 S 9

6.4 10 6 [m] C = 4πɛ 0 a = 4π (8.854 10 12 ) (6.4 10 6 ) = 7.1 10 4 [F] 10

ρ(r) a b c 4 3 πa3 ρ(r) 4πa e 0 k 3 ρ(r)e 0 0 4πa v B mcv B = k 3 e 0 0 ρ(r) 3c 2 πb 2 I = k 4πa 3 e 0 0 3c 2 4πa 3 e 0 v B = k 0 3mc 3 ρ(r) 3mc 3 e 0 πb 2 2πa = 2e2 0 k 0a 3 3πmab 2 c = 2e2 3 0 k 0a 2 3πmb 2 c 3 H = I 4πc 2 ds = I 2c = e2 0k 0 a 2 3πmb 2 c 4 e 2 0k 0 a 2 3πmb 2 c 4 I 11

r 1, r 2,..., r n 1 ɛ 1, ɛ 2,..., ɛ n a Q r ɛ i A a r D r i 1 < r < r i D(r) = E i = Q 4πr 2 Q 4πɛ i r 2 r V = Edr ( r = E i dr + r i = Q ( 1 4πɛ i r 1 r i ri E i+1 dr + + r i+1 ( 1 1 r i r i+1 ) + Q 4πɛ i+1 rn 1 E n dr ) ) + + Q 4πɛ n 1 ( 1 1 ) + Q 1 r n 1 r n 4πɛ n r n 12

a a b ɛ 0 Q O r(> a) E D = Q 4πr 2 E = D (b < r) D (a < r < b) ɛ 0 ɛ V D D V = dr + ɛ 0 ɛ sdr = Q ( 1 4πɛ 0 b + s ( 1 ɛ a 1 )) b C C = Q V = 4πɛ ( 0 1 a ) 1 b 1 b + s ɛ = 4πsɛ 0 ɛ ab (1 ɛs) b a 13

z ν a n xy V 0 B 0 Φ Φ nb(πa 2 ) B = B 0 sin 2πνt V i V i = dφ dt = 2nπ2 a 2 νb 0 cos 2πνt V 0 V 0 = 2nπ 2 a 2 νb 0 B 0 = V 0 2nπ 2 a 2 ν 14

ρ A A B A B c r E A ρ B ρ B r B r r = c + r A r E A B r E B E A = 1 4 4πɛ 0 3 π r 3 ρ r r 3 = ρ r 3ɛ 0 r E E A = 1 4πɛ 0 4 3 π r 3 ( ρ) r r 3 = ρ 3ɛ 0 r E = E A + E B = ρ 3ɛ 0 (r r ) = ρ 3ɛ 0 c 15

q (1) E = 4πɛ 0 r 2 E(r, θ, z) (2) (1) ( ) (1) z E E = cos θ = λ z 4πɛ 0 (r 2 + z 2 ) r r, sin θ = z 2 +z 2 r 2 +z 2 rλ z E r = E cos θ = 4πɛ 0 (r 2 + z 2 ) 3 2 zλ z E z = E sin θ = 4πɛ 0 (r 2 + z 2 ) 3 2 E r = λ 4πɛ 0 A B r (r 2 + z 2 ) 3 2 dz, E z = λ 4πɛ 0 A B z dz (r 2 + z 2 ) 3 2 z = r tan θ OA = r tan α, OB = r tan β r 2 + z 2 = r 2 (1 + tan 2 θ) = r2 cos 2, dz = r θ cos 2 θ dθ E r = λ α r 4πɛ 0 β ( r 2 cos 2 θ ) 3 2 r cos 2 θ dθ = λ 1 4πɛ 0 r 16 α β cos θdθ

E z = λ 4πɛ 0 α β = λ 1 (sin α sin β) 4πɛ 0 r r tan θ ( r2 cos 2 θ ) 3 2 r cos 2 θ dθ = = λ 1 (cos β cos α) 4πɛ 0 r α π 2, β π 2 λ 1 4πɛ 0 r α β sin θdθ E r λ 2πɛ 0 r, E z 0 E = λ 2πɛ 0 r e r (2) ɛ 0 E ds = λ 1 S E//S E(r) ds = λ S ɛ 0 E(r) 2πr = λ ɛ 0 E(r) = E = λ 2πɛ 0 r λ 2πɛ 0 r e r 17

-e -e exωb E i : A B ee i = exωb E i = xωb V = = = C 0 i ds l 0 l 0 i dx xωbdx ( x 2 = ωb 2 = 1 2 Bl2 ω ) l 0 18

2 ( j) 2 d l a B dr = µ 0 jl C 2lB = µ 0 jl B = µ 0j 2 2 B = µ 0 j F = B Il = B jal = 1 2 µ 0jS ( )(S = al) t d V V = dφ dt = Bl d t (E = B d x ) j j a El = jes t d ( ) (B = µ 0 j) u = 1 2 µ 0 B 2 U = jes t 1 2 BjS d = (jb 12 ) Bj S d = 1 2 BjS d = 1 2 µ 0j 2 S d = 1 B 2 S d 2 µ 0 19

1[m] 1. 5[m] 1 +20[C] 1 20[C] 2. 40[m] 4 1[C/m] 1. 4 2 0[V/m] 2. a = 20[m] λ h = 1[m] R y x[m] dx[m] λx[c] de y = λdx cos θ 4πɛ 0 (x 2 + R 2 ) tan θ = x R x2 + R 2 = R 2 sec 2 θ[m] dx = R sec 2 θdθ E = E y = λ θ0 cos θdθ = λ sin θ 0 4πɛ 0 R θ 0 2πɛ 0 R = R = h 2 + a 2 4 E all = 1 πɛ 0 200[V/m] 2ahλ (h 2 + a 2 ) h 2 + 2a 2 λ ah 2πɛ 0 R R2 + a 2 20

3 m q 3 3 a t = 0 t = 3 v 3 3 3 5 3a = d W 3q 2 4πɛ 0 d q2 4πɛ 0d 1 2 mv2 = v = q 2 4πɛ 0 3a q 2 3πɛ0 am 5 21

r A, r B 2 A, B q A, q B 1. A, B 2. AB E A, E B 1. ρ A, ρ B ρ A = q A 4, ρ B = q B 3 πr3 4 A 3 πr3 B E A, E B ɛ 0 ɛ 0 E A ds = ɛ 0 E A E B ds = ɛ 0 E B ɛ 0 E A ds = ρ A 4 3 πr3 A ds ds ɛ 0 E A 4πr 2 A = ρ A 4 3 πr3 A V A = r A q A E A = 4πɛ 0 ra 2 q B E B = 4πɛ 0 rb 2 E A ds = E A dr = q A r A 4πɛ 0 r A q B V B = 4πɛ 0 r B 2. AB A, B q A 4πɛ 0 r A = q B 4πɛ 0 r B q A, q B q A, q B q A + q B = q A + q B r A q A = (q A + q B ) r A + r B q B r B = (q A + q B ) r A + r B 22

E A = q A q A + q B = 4πɛ 0 r A 4πɛ 0 r A (r A + r B ) E B = q B q A + q B = 4πɛ 0 r B 4πɛ 0 r B (r A + r B ) 23

ρ EdS = Q E ds A ɛ 0 EdS = 2EA = Q ɛ 0 2EA = Aρ ɛ 0 E = ρ 2ɛ 0 24

Q a x ds dq P de 1 E y 0 x dq de = 4πɛ 0 (x 2 + a 2 ), cos θ = x x2 + a 2 xdq de x = de cos θ = 4πɛ 0 (x 2 + a 2 ) 3 2 E x = = 1 4πɛ 0 1 xdq 4πɛ 0 (x 2 + a 2 ) 3 2 xq (x 2 + a 2 ) 3 2 25

a[m] n 1 l[m] n 2 L 1, L 2 L 1 I = I 0 sin ωt L 2 L 1 I = I 0 sin ωt Φ n2 = B ds L 1 L 1 Φ n1 = CDEF B ds = = B CD D C B ds + DE ds = µ 0 n 1 l I 2πa2 B ds + B ds + B ds EF F C CD 1 L 1 Φ n1 = 2πa2 µ 0 n 1 I 0 sin ωt l L 2 1 L 2 Φ n1 V (i) 2 = Φ n 2 t = 2πa2 µ 0 n 1 n 2 I 0 sin ωt l = 2πωa2 µ 0 n 1 n 2 I 0 cos ωt l 2πωa 2 µ 0 n 1 n 2 I 0 l 26

2450MHz 141V( 50Hz) S = E H ( ) 2 = 1.41 V V max ω V = V max sin ωt ω = 2πf V = V max sin 2πft D V = D 0 Edx = ED ( ) E = V D = V max sin 2πft D C ( ) E H ds = j + ɛ 0 ds t (j: ) E H ds = ɛ 0 t ds C H = Sɛ 0V max 2πf cos 2πft D C dmathbfs S = E H C = E H( E H) = V max sin 2πft D S = πfɛ 0SV 2 max sin 4πft D 2 C ds S = 1 2 πfɛ 0 SV 2 max D 2 C ds = 1.71 10 17 [J/s m 2 ] S Sɛ 0V max 2πf cos 2πft D C ds 27