LHC ALICE (QGP) QGP QGP QGP QGP ω ϕ J/ψ ALICE s = ev + J/ψ

Similar documents
500 6 LHC ALICE ( 25 ) µsec MeV QGP

LEPS

master_plan_hi_final.key

24 B

W Z Large Hadron Collider LHC ATLAS LHC ATLAS Higgs 1

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

1/2 ( ) 1 * 1 2/3 *2 up charm top -1/3 down strange bottom 6 (ν e, ν µ, ν τ ) -1 (e) (µ) (τ) 6 ( 2 ) 6 6 I II III u d ν e e c s ν µ µ t b ν τ τ (2a) (

cm λ λ = h/p p ( ) λ = cm E pc [ev] 2.2 quark lepton u d c s t b e 1 3e electric charge e color charge red blue green qq

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

Drift Chamber

nenmatsu5c19_web.key

rcnp01may-2

Μ粒子電子転換事象探索実験による世界最高感度での 荷電LFV探索 第3回機構シンポジューム 2009年5月11日 素粒子原子核研究所 三原 智

main.dvi

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

B

Hasegawa_JPS_v6

untitled

FPWS2018講義千代

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

W 1983 W ± Z cm 10 cm 50 MeV TAC - ADC ADC [ (µs)] = [] (2.08 ± 0.36) 10 6 s 3 χ µ + µ 8 = (1.20 ± 0.1) 10 5 (Ge


Microsoft PowerPoint - okamura.ppt[読み取り専用]

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

untitled

Canvas-tr01(title).cv3


(5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b)

[1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin Clifford Spin 10 A 12 B 17 1 Cliffo

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

反D中間子と核子のエキゾチックな 束縛状態と散乱状態の解析

TeV b,c,τ KEK/ ) ICEPP

LLG-R8.Nisus.pdf

( )

LHC ATLAS W µν Z µµ

66 σ σ (8.1) σ = 0 0 σd = 0 (8.2) (8.2) (8.1) E ρ d = 0... d = 0 (8.3) d 1 NN K K 8.1 d σd σd M = σd = E 2 d (8.4) ρ 2 d = I M = EI ρ 1 ρ = M EI ρ EI

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

Mott散乱によるParity対称性の破れを検証

研修コーナー

パーキンソン病治療ガイドライン2002

Microsoft PowerPoint - nakamuraJPS2005av2

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

BESS Introduction Detector BESS (BESS-TeVspectrometer) Experimetns Data analysis (1) (2) Results Summary

1 2 1 a(=,incident particle A(target nucleus) b (projectile B( product nucleus, residual nucleus, ) ; a + A B + b a A B b 1: A(a,b)B A=B,a=b 2 1. ( 10

main.dvi

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1

q π =0 Ez,t =ε σ {e ikz ωt e ikz ωt } i/ = ε σ sinkz ωt 5.6 x σ σ *105 q π =1 Ez,t = 1 ε σ + ε π {e ikz ωt e ikz ωt } i/ = 1 ε σ + ε π sinkz ωt 5.7 σ

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

Muon Muon Muon lif


Analysis of π0, η and ω mesons in pp collisions with a high pT photon trigger at ALICE

B


( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

I ( ) 2019

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

基礎数学I


II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x


Electron Ion Collider と ILC-N 宮地義之 山形大学


1 1 (proton, p) (neutron, n) (uud), (udd) u ( ) d ( ) u d ( ) 1: 2: /2 1 0 ( ) ( 2) 0 (γ) 0 (g) ( fm) W Z 0 0 β( )

本文/目次(裏白)

( ) ( ) 1729 (, 2016:17) = = (1) 1 1

Bethe-Bloch Bethe-Bloch (stopping range) Bethe-Bloch FNAL (Fermi National Accelerator Laboratory) - (SciBooNE ) SciBooNE Bethe-Bloch FNAL - (SciBooNE

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

I

km_atami09.ppt

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

* n x 11,, x 1n N(µ 1, σ 2 ) x 21,, x 2n N(µ 2, σ 2 ) H 0 µ 1 = µ 2 (= µ ) H 1 µ 1 µ 2 H 0, H 1 *2 σ 2 σ 2 0, σ 2 1 *1 *2 H 0 H

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

J-PARC E15 K K-pp Missing mass Invariant mass K - 3 He Formation K - pp cluster neutron Mode to decay charged particles p Λ π - Decay p Decay E15 dete

[ ] [ ] [ ] [ ] [ ] [ ] ADC

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

25 3 4

master.dvi

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

陦ィ邏・2

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3

TOP URL 1

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P

LHCfZ (RHICf, LHC 軽原子核衝突 ) さこ隆志名大 STE/KMI 2014/03/14 CRC タウンミーティング 1

30

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ

数学の基礎訓練I

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

0406_total.pdf

TOP URL 1

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

Transcription:

8 + J/ψ ALICE B597 : : : 9

LHC ALICE (QGP) QGP QGP QGP QGP ω ϕ J/ψ ALICE s = ev + J/ψ

6..................................... 6. (QGP)..................... 6.................................... 6.4.............................. 7.5.............................. 7.6........................... 8.7......................... 8.8...................................... 8 9. LHC.................................... 9. ALICE.....................................................................................................................................4..................................5..............................4 V......................................5......................................6 IS..................................... AliRoot................................................................................................................................................................................ Dimuon............................. 4.4.................................. 4.5................................. 4.5. (Event mixing technique)............. 5.5. (Like-sign method)............... 5.6.............................. 6.7 acceptance efficiency.............................. 6.8 (trigger efficiency)......................... 6.9.................................... 7................................... 7

4 8 4............................ 8 4................................. 8 4.. acceptance efficiency......................... 4................................. 4.................................... 4 4................................. 4 4................................ 8 4..................................... 4.. Raw yield................................. 4.................................. 4 4................................ 6 5 8 6 9 4

................................... 6 [...................... 7 LHC [.................................. 9 4 LHC ( )[............................... 9 5 ALICE [4........................... 6 [5........................ 7 V IS [6..................... 8 J/ψ........... 9 J/ψ.............. 9.... J/ψ 4 < y <.5 J/ψ............................. J/ψ J/ψ.................................... 4 J/ψ acceptance efficiency...................... 5 J/ψ............................ 6 J/ψ p ( ) p ( )..................................... 7............................ 8....................................... 5 9...................................... 6 PHENIX + GeV [4....... 7 pol()............. 8 pol(4)............. 9 pol(5)............. 4 pol(6)............. 5 J/ψ................... 6 J/ψ raw yield.............................. 4 7 event mixing acceptance efficiency J/ψ....................................... 4 8 like-sign method acceptance efficiency J/ψ.................................... 5 9 ALICE LHCb J/ψ [9..... 5 [9 /.......... 6 event mixing acceptance efficiency J/ψ.................................... 6 like-sign method acceptance efficiency J/ψ.................................. 7 5

. 4 W Z (Quantum Chromo Dynamics, QCD) 4 ( ) c c J/ψ u d :. (QGP) (QGP) QGP. u d MeV/c u d 6

GeV/c QGP : [.4 u d QCD u d.5 ρ ϕ ω QGP QGP 7

QGP.6 QGP RHIC LHC.7 (rapidity, y) y = lne + p z = ln E + p z E p z m + p = tanh ( p z E ) () z p p = p x + p y y y p z /E z β z = v z /c z y = tanh (β) y y y z (pseudorapidity, η) η = tanh ( p z p ) = tanh (cosθ) () θ z θ m p E p.8 + J/ψ J/ψ 8

. LHC LHC (Large Hadron Collider) LHC (CERN) LHC ALICE CMS ALAS LHCb LHCf OEM 6 : LHC [ 4: LHC ( )[ 9

. ALICE ALICE (A Large Ion Collider Experiment) LHC QGP () (.9 < η <.9) () ( 4 < η <.5) () 5: ALICE [4. ALICE 4 < η <.5.. 4. m 4 GeV/c

.. 5 µm...7..4. m..5 ns 6: [5.4 V V z = 88cm VC.7 < η <.7 z = 9cm VA.8 < η < 5.

.5 z = 7cm C. < η <. z = 7cm A 4.6 < η < 4.9.6 IS IS (Inner racking System) SPD(Silicon Pixel Detector) SDD(Silicon Drift Detector) SSD(Silicon Strip Detector) 6 7: V IS [6

. AliRoot AliRoot Root ALICE AliRoot AliGenBox ALICE AliRoot. ALICE 5 s = ev + J/ψ.. J/ψ 8: J/ψ 9: J/ψ... + VC VA

.. Dimuon + ϕ ω J/ψ J/ψ J/ψ GeV/c.4 J/ψ J/ψ M J/ψ E J/ψ p J/ψ M µ E µ p µ E J/ψ = M J/ψ + p J/ψ () (4) (5) () E J/ψ = E µ + + E µ (4) p J/ψ = p µ + + p µ (5) MJ/ψ = E µ + E µ + E + µ E µ + ( p µ + p µ + + p µ p µ +) (6) J/ψ M J/ψ = Eµ + E µ + E + µ E µ + ( p µ + p µ + + p µ p µ +) (7) ( 4 < η <.5) Dimuon.5 J/ψ J/ψ 4

.5. (Event mixing technique) (mixed event) N same + = N same + S N mixed + (8) (same event) (unlike-sign) N mixed + mixed event unlike-sign S N same LS dm S = N mixed + dm (9) N same LS same event like-sign mixed event unlike-sign.5. (Like-sign method) (like-sign) J/ψ R = N+ same R N++ same N same () N++ same same N like-sign N++ same N same (++) ( ) R R = N mixed + N++ mixed N mixed () R µ + µ N + mixed mixed N mixed event unlike-sign like-sign N mixed ++ mixed event like-sign unlike-sign same event like-sign 5

.6 exp( (x x) σ ) ( x x f(x; α, n, x, σ, N) = N σ > α) ( n α )n exp( α ) ( n α α x x σ ) n ( x x σ α) () J/ψ ( 5σ +σ) J/ψ J/ψ σ 5σ.7 acceptance efficiency acceptance efficiency J/ψ acceptance ( 4 < y <.5) J/ψ efficiency J/ψ acceptance efficiency J/ψ acceptance efficiency = J/ψ 4 < y <.5 J/ψ ().8 (trigger efficiency) acceptance efficiency J/ψ ϵ J/ψ J/ψ trigger = J/ψ (4) (5) ϵ µ trigger = p > GeV/c (6) (7) 6

.9 d σ dp dy = σ MB p+p N event Rf R B d N dp dy (8) σ σ MB p+p + N event R B (5.9.6)% [ N (Raw yield) Rf Rejection factor + Dimuon Dimuon Rejection factor Dimuon + σ MB = (57.8.) mb [ N event 999 [9 Dimuon N event =. 7 L int = 46.7nb σ MB σ MB = Rf N event L int (9) Rf Rf = 88.6. E d σ dp = σp+p MB d N πp N event Rf R B dp dy () 7

4 4. 4.. ( ) ( ) J/ψ J/ψ [(4MeV/c ).6.4. distribution ( < p < GeV/c) χ / ndf.8 / 5 Mean.5. σ.67.8 N 86. 7.8 [(4MeV/c ).5.5 distribution ( < p < GeV/c) χ / ndf. / 5 Mean.. σ.649.74 N 95 5..8.6.4..5...4.6.8..4.6.8 4 4. 4.4 M [GeV/c..4.6.8..4.6.8 4 4. 4.4 M [GeV/c [(4MeV/c ).5 distribution ( < p < GeV/c) 6.66 / 5 Mean.. σ.647. N 8.6 [(4MeV/c ).5 distribution ( < p < 4 GeV/c) 4.74 / 5 Mean.. σ.646.54 N 844 9.4.5.5..4.6.8..4.6.8 4 4. 4.4 M [GeV/c..4.6.8..4.6.8 4 4. 4.4 M [GeV/c [(4MeV/c ).8.6.4. distribution (4 < p < 5 GeV/c) 9.48 / 5 Mean.. σ.65.76 N 6.4 6. [(5MeV/c )..8 distribution (5 < p < 6 GeV/c) 4.4 / Mean.4.4 σ.688.5 N 465.9.8.8.6.6.4.4.....4.6.8..4.6.8 4 4. 4.4 M [GeV/c...4.6.8..4.6.8 4 4. 4.4 M [GeV/c 8

) [(5MeV/c 6 5 4 distribution (6 < p < 7 GeV/c).8 / Mean.99.4 σ.56.55 N 78.5 8.4 ) [(5MeV/c 4 5 5 distribution (7 < p < 8 GeV/c) 7.7 / Mean..5 σ.587.5 N 7. 5.6 5 5..4.6.8..4.6.8 4 4. 4.4 M [GeV/c 5..4.6.8..4.6.8 4 4. 4.4 M [GeV/c ) [(5MeV/c 5 distribution (8 < p < 9 GeV/c).84 / Mean.95.5 σ.5995.548 N 4.. ) [(5MeV/c 4 distribution (9 < p < GeV/c) 7.4 / Mean.9.7 σ.5797.77 N 66.45 8.5 5 8 6 4 5..4.6.8..4.6.8 4 4. 4.4 M [GeV/c 4..4.6.8..4.6.8 4 4. 4.4 M [GeV/c : ) [(4MeV/c.6.4. distribution ( < p < GeV/c) χ / ndf.66 / 5 Mean.5. σ.67.7 N 84.5.7 ) [(4MeV/c.5 distribution ( < p < GeV/c) 4.8 / 5 Mean.4. σ.6674. N 48 4.8.8.5.6.4..5...4.6.8..4.6.8 4 4. 4.4 M [GeV/c..4.6.8..4.6.8 4 4. 4.4 M [GeV/c ) [(4MeV/c distribution ( < p < GeV/c) 9.8 / 5 Mean.. σ.66.45 N 4. ) [(4MeV/c.5 distribution ( < p < 4 GeV/c) 9.5 / 5 Mean.4. σ.664. N 85 5.7.5.5.5..4.6.8..4.6.8 4 4. 4.4 M [GeV/c..4.6.8..4.6.8 4 4. 4.4 M [GeV/c 9

[(4MeV/c ).8.6.4. distribution (4 < p < 5 GeV/c) 9.567 / 5 Mean.97. σ.66.5 N 65.5. [(5MeV/c )..8 distribution (5 < p < 6 GeV/c).48 / Mean.7.5 σ.6557.469 N 444.4 8.5.8.6.6.4.4.....4.6.8..4.6.8 4 4. 4.4 M [GeV/c...4.6.8..4.6.8 4 4. 4.4 M [GeV/c [(5MeV/c ) 6 5 4 distribution (6 < p < 7 GeV/c) 8.984 / Mean.96.5 σ.55.46 N 9.7.8 [(5MeV/c ) 4 5 5 distribution (7 < p < 8 GeV/c).75 / Mean.9.6 σ.55.6 N 66.5 7. 5 5..4.6.8..4.6.8 4 4. 4.4 M [GeV/c 5..4.6.8..4.6.8 4 4. 4.4 M [GeV/c [(5MeV/c ) 5 5 distribution (8 < p < 9 GeV/c).4 / Mean.9.5 σ.659.6 N 9..5 [(5MeV/c ) distribution (9 < p < GeV/c) 4.84 / Mean.9.8 σ.5574.9 N 7. 9.4 8 6 4 5..4.6.8..4.6.8 4 4. 4.4 M [GeV/c 4..4.6.8..4.6.8 4 4. 4.4 M [GeV/c : 4.. acceptance efficiency J/ψ ( 4 < y <.5) J/ψ J/ψ J/ψ J/ψ

[(GeV/c) dn/dp 5 Number of J/ψ (simulation) [(GeV/c) 4 Number of detected J/ψ aaa Entries Mean.9 RMS.96 dn/dp 4 4 5 6 7 8 9 p [GeV/c 4 5 6 7 8 9 p [GeV/c : J/ψ : J/ψ 4 < y <.5 J/ψ J/ψ J/ψ acceptance efficiency acceptance x Efficiency acceptance x efficiency.6.5.4 e_ls Entries Mean 6.49 RMS.85... 4 5 6 7 8 9 p [GeV/c 4: J/ψ acceptance efficiency 4.. J/ψ

trigger efficiency of J/ψ.9.8.7.6.5.4... rigger efficiency of J/ψ tels Entries Mean 5.48 RMS.858 4 5 6 7 8 9 J/ψ p [GeV/c 5: J/ψ 4 5 acceptance efficiency J/ψ p GeV/c p < GeV/c J/ψ GeV/c 7 GeV/c J/ψ p GeV/c θ 6 J/ψ p GeV/c [GeV/c muon p 9 8 7 6 dimuon p vs single muon p hist Entries 6 Mean x.94 Mean y.8 RMS x.88 RMS y.97 6 4 5 4 8 6 4 4 5 6 7 8 9 [GeV/c dimuon p 6: J/ψ p ( ) p ( ) J/ψ p GeV/c

p GeV/c rigger efficiency of single muon trigger efficiency of single muon.8.6.4. 4 5 6 7 8 9 µ p [GeV 7:

4. 4.. distribution < p < [GeV/c ) distribution < p < [GeV/c +background ) +background [(5MeV/c Event mixing technique [(5MeV/c Event mixing technique..4.6.8..4.6.8 4 4. 4.4 M [GeV/c..4.6.8..4.6.8 4 4. 4.4 M [GeV/c distribution < p < [GeV/c ) +background ) [(5MeV/c Event mixing technique distribution < p < 4 [GeV/c +background [(5MeV/c Event mixing technique..4.6.8..4.6.8 4 4. 4.4 M [GeV/c..4.6.8..4.6.8 4 4. 4.4 M [GeV/c distribution 4 < p < 5 [GeV/c distribution 5 < p < 6 [GeV/c ) +background ) +background [(5MeV/c Event mixing technique [(5MeV/c Event mixing technique..4.6.8..4.6.8 4 4. 4.4 M [GeV/c..4.6.8..4.6.8 4 4. 4.4 M [GeV/c 4

) [(5MeV/c distribution 6 < p < 7 [GeV/c +background Event mixing technique ) [(5MeV/c +background distribution 7 < p < 8 [GeV/c Event mixing technique..4.6.8..4.6.8 4 4. 4.4 M [GeV/c..4.6.8..4.6.8 4 4. 4.4 M [GeV/c ) distribution 8 < p < 9 [GeV/c +background ) distribution 9 < p < [GeV/c +background [(5MeV/c Event mixing technique [(5MeV/c Event mixing technique )..4.6.8..4.6.8 4 4. 4.4 M [GeV/c..4.6.8..4.6.8 4 4. 4.4 M [GeV/c 8: [(5MeV/c distribution < p < [GeV/c +background Like-sign method ) [(5MeV/c distribution < p < [GeV/c +background Like-sign method )..4.6.8..4.6.8 4 4. 4.4 M [GeV/c..4.6.8..4.6.8 4 4. 4.4 M [GeV/c [(5MeV/c distribution < p < [GeV/c +background Like-sign method ) [(5MeV/c distribution < p < 4 [GeV/c +background Like-sign method..4.6.8..4.6.8 4 4. 4.4 M [GeV/c..4.6.8..4.6.8 4 4. 4.4 M [GeV/c 5

) distribution 4 < p < 5 [GeV/c +background ) distribution 5 < p < 6 [GeV/c +background [(5MeV/c Like-sign method [(5MeV/c Like-sign method..4.6.8..4.6.8 4 4. 4.4 M [GeV/c..4.6.8..4.6.8 4 4. 4.4 M [GeV/c ) [(5MeV/c distribution 6 < p < 7 [GeV/c +background Like-sign method ) [(5MeV/c +background distribution 7 < p < 8 [GeV/c Like-sign method..4.6.8..4.6.8 4 4. 4.4 M [GeV/c..4.6.8..4.6.8 4 4. 4.4 M [GeV/c distribution 8 < p < 9 [GeV/c ) +background ) [(5MeV/c Like-sign method distribution 9 < p < [GeV/c +background [(5MeV/c Like-sign method..4.6.8..4.6.8 4 4. 4.4 M [GeV/c..4.6.8..4.6.8 4 4. 4.4 M [GeV/c 9: 8 9 + cc bb cc bb D B B D D + = cd, D = cd, D = cu, D = cu D (9..7)%[ K - 6

: PHENIX + GeV [4 7

4.. 8 9 J/ψ 4 J/ψ 4 f n (x) = Crystalball function + pol(n) (n =, 4, 5, 6) () n (pol(n) = p i x i ) () 4 pol(n) J/ψ i= ) [(5MeV/c 5 4 distribution < p < [GeV/c χ / ndf. /. Mean..75 σ.6 N 59 4.4 ) [(5MeV/c 8 87. / 7 Mean.. σ.656.5 6 N 58 49.4 5 4 distribution < p < [GeV/c..4.6.8..4.6.8 4 4. 4.4 M µ [GeV/c + µ -..4.6.8..4.6.8 4 4. 4.4 M µ [GeV/c + µ - ) [(5MeV/c 7 6 5 4 distribution < p < [GeV/c 87.5 /.4 Mean..6555 σ.44 N 489 47.8 ) [(5MeV/c 7 6 5 4 distribution < p <4 [GeV/c 7.4 /. Mean..75 σ.58 N 66 4.7..4.6.8..4.6.8 4 4. 4.4 M µ [GeV/c + µ -..4.6.8..4.6.8 4 4. 4.4 M µ [GeV/c + µ - ) [(5MeV/c 5 4 distribution 4 < p <5 [GeV/c 89.5 / Mean.. σ.675.59 N 76 5. ) [(5MeV/c 5 5 5 distribution 5 < p <6 [GeV/c 6.5 / Mean.. σ.69.77 N 789 8.9 5..4.6.8..4.6.8 4 4. 4.4 M µ [GeV/c + µ - 5..4.6.8..4.6.8 4 4. 4.4 [GeV/c ) [(5MeV/c 5 distribution 6 < p <7 [GeV/c. / Mean.. σ.6688.98 N 98 4.7 ) [(5MeV/c 4 8 distribution 7 < p <8 [GeV/c 75.7 / Mean.. σ.688. N 76.8 9.4 6 5 4..4.6.8..4.6.8 4 4. 4.4 M + [GeV/c..4.6.8..4.6.8 4 4. 4.4 [GeV/c ) [(5MeV/c 8 7 6 5 4 distribution 8 < p <9 [GeV/c / ndf χ 4.6 /.4 Mean..648 σ.5 N 44.5 4.8 ) [(5MeV/c 4 5 5 5 5 distribution 9 < p < [GeV/c 48.8 / Mean.. σ.7.6 N 89.7.7 5..4.6.8..4.6.8 4 4. 4.4 [GeV/c..4.6.8..4.6.8 4 4. 4.4 [GeV/c : pol() 8

) [(5MeV/c 5 4 distribution < p < [GeV/c 9.8 / Mean.8. σ.64.5 N 75 4. ) [(5MeV/c 8 7 6 5 4 distribution < p < [GeV/c 544.4 / Mean.5. σ.6.8 N 65 5. µ + µ -..4.6.8..4.6.8 4 4. 4.4 M [GeV/c µ + µ -..4.6.8..4.6.8 4 4. 4.4 M [GeV/c ) [(5MeV/c 87.4 / 7 Mean.4. 6 σ.6559.44 N 489 47.8 5 4 distribution < p < [GeV/c ) [(5MeV/c 7 6 5 4 distribution < p <4 [GeV/c 75.9 / Mean.. σ.69.57 N 6 4.8 µ + µ -..4.6.8..4.6.8 4 4. 4.4 M [GeV/c µ + µ -..4.6.8..4.6.8 4 4. 4.4 M [GeV/c ) [(5MeV/c 5 4 distribution 4 < p <5 [GeV/c 54.8 / Mean.. σ.647.5 N 755 4.8 ) [(5MeV/c 5 5 distribution 5 < p <6 [GeV/c 8.7 / Mean.. σ.6776.75 N 794 9. 5 µ + µ -..4.6.8..4.6.8 4 4. 4.4 M [GeV/c µ + µ - 5..4.6.8..4.6.8 4 4. 4.4 M [GeV/c ) [(5MeV/c 5 distribution 6 < p <7 [GeV/c 87. / Mean.5. σ.696.84 N 44 5. ) [(5MeV/c 4 8 6 distribution 7 < p <8 [GeV/c 77.7 / Mean.. σ.6774. N 764.4 9.4 5 4..4.6.8..4.6.8 4 4. 4.4 M µ [GeV/c + µ -..4.6.8..4.6.8 4 4. 4.4 M [GeV/c ) [(5MeV/c 8 7 6 5 4 distribution 8 < p <9 [GeV/c 64. / Mean.. σ.54.9 N 46.6 6. ) [(5MeV/c 4 5 5 5 distribution 9 < p < [GeV/c 5. / Mean.. σ.694.54 N 9.7.7 5 5..4.6.8..4.6.8 4 4. 4.4 M [GeV/c..4.6.8..4.6.8 4 4. 4.4 M [GeV/c : pol(4) 9

) [(5MeV/c 5 4 distribution < p < [GeV/c 488. / Mean.8. σ.67.5 N 76 4.5 ) [(5MeV/c 8 / ndf χ 6.6 /.6 Mean. 7 σ.69.4 N 5767 5. 6 5 4 distribution < p < [GeV/c M µ + µ -..4.6.8..4.6.8 4 4. 4.4 [GeV/c M µ + µ -..4.6.8..4.6.8 4 4. 4.4 [GeV/c ) [(5MeV/c 7 / ndf χ 85.8 / Mean.. σ.6579.44 6 4885 N 47.8 5 4 distribution < p < [GeV/c ) [(5MeV/c 7 6 5 4 distribution < p <4 [GeV/c 79.4 / Mean.. σ.695.57 N 64 4.8 M µ + µ -..4.6.8..4.6.8 4 4. 4.4 [GeV/c M µ + µ -..4.6.8..4.6.8 4 4. 4.4 [GeV/c ) [(5MeV/c 5 4 distribution 4 < p <5 [GeV/c 66. / Mean.. σ.676.55 N 76 4.4 ) [(5MeV/c 5 5 distribution 5 < p <6 [GeV/c 58.5 / Mean.99. σ.6894.77 N 789 8.8 5..4.6.8..4.6.8 4 4. 4.4 M µ + µ [GeV/c - 5..4.6.8..4.6.8 4 4. 4.4 [GeV/c ) [(5MeV/c 5 5 distribution 6 < p <7 [GeV/c 99. / Mean.5. σ.658.84 N 47 5. ) [(5MeV/c 4 / ndf χ 48.9 /. Mean. σ.75.4 N 759.9 9. 8 6 4 distribution 7 < p <8 [GeV/c..4.6.8..4.6.8 4 4. 4.4 M µ + µ [GeV/c -..4.6.8..4.6.8 4 4. 4.4 [GeV/c ) [(5MeV/c 8 7 6 5 4 distribution 8 < p <9 [GeV/c 69.4 / Mean.. σ.59. N 46. 6.4 ) [(5MeV/c 4 5 5 5 5 distribution 9 < p < [GeV/c 54.4 / Mean.. σ.6856.47 N 94.7 5..4.6.8..4.6.8 4 4. 4.4 [GeV/c..4.6.8..4.6.8 4 4. 4.4 [GeV/c : pol(5)

) [(5MeV/c 5 4 distribution < p < [GeV/c 4.4 / Mean.8. σ.66.5 N 75 4. ) [(5MeV/c 8 7 6 5 distribution < p < [GeV/c 88 / Mean.5. σ.658.6 N 5759 5. 4..4.6.8..4.6.8 4 4. 4.4 M µ + µ - [GeV/c..4.6.8..4.6.8 4 4. 4.4 M µ + µ - [GeV/c ) [(5MeV/c 7 6 5 4 distribution < p < [GeV/c 8.8 / Mean.. σ.659.44 N 4884 47.7 ) [(5MeV/c 7 6 5 4 distribution < p <4 [GeV/c 84.4 / Mean.. σ.687.56 N 67 4.9..4.6.8..4.6.8 4 4. 4.4 M µ + µ - [GeV/c..4.6.8..4.6.8 4 4. 4.4 M µ + µ - [GeV/c ) [(5MeV/c 5 4 distribution 4 < p <5 [GeV/c 5.4 / Mean.. σ.679.57 N 7 4.6 ) [(5MeV/c 5 5 distribution 5 < p <6 [GeV/c 56.74 / Mean.99. σ.699.77 N 788 8.8 5..4.6.8..4.6.8 4 4. 4.4 M µ + µ - [GeV/c 5..4.6.8..4.6.8 4 4. 4.4 M µ + µ - [GeV/c ) [(5MeV/c 5 5 distribution 6 < p <7 [GeV/c 4.9 / Mean.. σ.6696.97 N 96 4.5 ) [(5MeV/c 4 8 6 4 distribution 7 < p <8 [GeV/c 54.4 / Mean.. σ.695. N 76.4 9...4.6.8..4.6.8 4 4. 4.4 M µ + µ - [GeV/c..4.6.8..4.6.8 4 4. 4.4 M µ + µ - [GeV/c ) [(5MeV/c 8 7 6 5 4 distribution 8 < p <9 [GeV/c 76.7 / Mean.. σ.546.7 N 46. 6.4 ) [(5MeV/c 4 5 5 5 5 distribution 9 < p < [GeV/c 58.4 / Mean.98. σ.6778.6 N 99.6.6 5..4.6.8..4.6.8 4 4. 4.4 M µ + µ - [GeV/c..4.6.8..4.6.8 4 4. 4.4 M µ + µ - [GeV/c 4: pol(6)

9 J/ψ 46 counts [a.u. 44 < p < [GeV/c num Entries 4 Mean.97 RMS.5 counts [a.u. 6 4 < p < [GeV/c num Entries 4 Mean.994 RMS. 4 4 8 6 4 8 f (x) f 4(x) f 5(x) (x) f 6 6 f (x) f 4(x) f 5(x) (x) f 6 counts [a.u. 8 < p < [GeV/c num Entries 4 Mean. RMS.8 counts [a.u. 4 45 < p < 4 [GeV/c num Entries 4 Mean.995 RMS.9 85 4 8 45 4 795 95 79 9 85 785 8 f (x) f 4(x) f 5(x) (x) f 6 f (x) f 4(x) f 5(x) (x) f 6 counts [a.u. 4 5 4 < p < 5 [GeV/c num Entries 4 Mean.5 RMS.9 counts [a.u. 7 5 < p < 6 [GeV/c num Entries 4 Mean RMS.9 695 5 69 5 685 5 68 f (x) f 4(x) f 5(x) (x) f 6 f (x) f 4(x) f 5(x) (x) f 6

counts [a.u. 465 6 < p < 7 [GeV/c num Entries 4 Mean.998 RMS. counts [a.u. 4 7 < p < 8 [GeV/c num Entries 4 Mean. RMS.7 46 455 98 96 45 94 445 9 9 f (x) f 4(x) f 5(x) (x) f 6 f (x) f 4(x) f 5(x) (x) f 6 counts [a.u. 7 7 8 < p < 9 [GeV/c num Entries 4 Mean.99 RMS. counts [a.u. 9 < p < [GeV/c num Entries 4 Mean. RMS.9 68 9 66 8 7 64 6 6 5 6 4 f (x) f 4(x) f 5(x) (x) f 6 f (x) f 4(x) f 5(x) (x) f 6 5: J/ψ J/ψ pol() ( 5 ) J/ψ pol() (mean) RMS( 5 )/mean J/ψ 4. 4.. Raw yield Raw yield

[(GeV/c) Raw yield of J/ψ stdsys Entries Mean.6 RMS.5 dn/dp 4 4 5 6 7 8 9 p [GeV/c 6: J/ψ raw yield 4.. J/ψ 7 acceptance efficiency 8 dy) [µb/(gev/c) production cross section cross_section Entries Mean.67 RMS.8 σ/(dp d 4 5 6 7 8 9 p [GeV/c 7: event mixing acceptance efficiency J/ψ 4

dy) [µb/(gev/c) production cross section cross_section Entries Mean.665 RMS.79 σ/(dp d 4 5 6 7 8 9 p [GeV/c 8: like-sign method acceptance efficiency J/ψ 9: ALICE LHCb J/ψ [9 ( 9[9) 7,8 5

ratio.4. ratio...9.8.7.6 4 5 6 7 8 9 p [GeV/c : [9 / [9 % [9 4.. 9 - c [µb GeV Invariant production cross section cross_section Entries Mean.79 RMS.4 E d σ dp dy 4 5 6 7 8 9 p [GeV/c : event mixing acceptance efficiency J/ψ 6

- [µb GeV c c Invariant production cross section cross_section Entries Mean.784 RMS.49 E d^σ dp dy 4 5 6 7 8 9 p [GeV/c : like-sign method acceptance efficiency J/ψ 7

5 ALICE s = ev + acceptance efficiency s = ev + J/ψ ( < p < (GeV/c)) ( 4 < y <.5) 4 8

6 4 9

[,4 [ LHC ALICE -ALICE JAPAN- http://alice-j.org [ (4),, http://www.s.u-tokyo.ac.jp/ja/press/4/.html [4 he ALICE Collaboration http://aliceinfo.cern.ch/public/en/chapter/ ChapExperiment-en.html [5 he ALICE Collaboration, (), Addendum of the Letter Of Intent for the Upgrade of the ALICE Experiment : he Muon Forward racker [6 ALICE MAERS, (), he present Inner racking System - Steps forward!, http://alicematters.web.cern.ch/?q=alice_currentis [7 he ALICE Collaboration, (4), Performance of the ALICE Experiment at the CERN LHC [8 he ALICE Collaboration, (4), ALICE technical Design Report on Forward Detectors: FMD, and V [9 he ALICE Collaboration, (7), Energy dependence of forward-rapidity J/ψ and ψ(s) production in pp collisions at the LHC [ Particle Data Group, (5), Review of Particle Physics CHARMED MESONS http://pdg.lbl.gov/5/tables/rpp5-tab-mesons-charm.pdf [ Particle Data Group, (5), Review of Particle Physics BOOM MESONS http: //pdg.lbl.gov/5/tables/rpp5-tab-mesons-bottom.pdf [ he LHCb Collaboration, (5), Measurement of forward J/ψ production crosssection in pp collisions at s = ev [ he ALICE Collaboration, (6), ALICE luminosity determination for pp collisions at sqrts =ev [4 he PHENIX Collaboration, Yue Hang Leung, (7), Studying heavy flavor production via unlike-sign and like-sign dimuon spectra in p+p collisions at GeV in the PHENIX Experiment, https://indico.cern.ch/event/ 445/contributions/588/attachments/4884/56/yuehang_ qmposterdraft_v.pdf 4