2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP

Similar documents
18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

Gmech08.dvi

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

Gmech08.dvi

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

sec13.dvi

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq


ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

(1) D = [0, 1] [1, 2], (2x y)dxdy = D = = (2) D = [1, 2] [2, 3], (x 2 y + y 2 )dxdy = D = = (3) D = [0, 1] [ 1, 2], 1 {

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

1 1 3 ABCD ABD AC BD E E BD 1 : 2 (1) AB = AD =, AB AD = (2) AE = AB + (3) A F AD AE 2 = AF = AB + AD AF AE = t AC = t AE AC FC = t = (4) ABD ABCD 1 1

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

2 Chapter 4 (f4a). 2. (f4cone) ( θ) () g M. 2. (f4b) T M L P a θ (f4eki) ρ H A a g. v ( ) 2. H(t) ( )

3 filename=quantum-3dim110705a.tex ,2 [1],[2],[3] [3] U(x, y, z; t), p x ˆp x = h i x, p y ˆp y = h i y, p z ˆp z = h

85 4

46 4 E E E E E 0 0 E E = E E E = ) E =0 2) φ = 3) ρ =0 1) 0 2) E φ E = grad φ E =0 P P φ = E ds 0

77

2.4 ( ) ( B ) A B F (1) W = B A F dr. A F q dr f(x,y,z) A B Γ( ) Minoru TANAKA (Osaka Univ.) I(2011), Sec p. 1/30

Xray.dvi

notekiso1_09.dvi

( : December 27, 2015) CONTENTS I. 1 II. 2 III. 2 IV. 3 V. 5 VI. 6 VII. 7 VIII. 9 I. 1 f(x) f (x) y = f(x) x ϕ(r) (gradient) ϕ(r) (gradϕ(r) ) ( ) ϕ(r)

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

dynamics-solution2.dvi

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

1 12 ( )150 ( ( ) ) x M x 0 1 M 2 5x 2 + 4x + 3 x 2 1 M x M 2 1 M x (x + 1) 2 (1) x 2 + x + 1 M (2) 1 3 M (3) x 4 +

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

pdf

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d

I 1

φ s i = m j=1 f x j ξ j s i (1)? φ i = φ s i f j = f x j x ji = ξ j s i (1) φ 1 φ 2. φ n = m j=1 f jx j1 m j=1 f jx j2. m

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

Note.tex 2008/09/19( )

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

i

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

2000年度『数学展望 I』講義録


A

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

Chap11.dvi

1 29 ( ) I II III A B (120 ) 2 5 I II III A B (120 ) 1, 6 8 I II A B (120 ) 1, 6, 7 I II A B (100 ) 1 OAB A B OA = 2 OA OB = 3 OB A B 2 :

1 1. x 1 (1) x 2 + 2x + 5 dx d dx (x2 + 2x + 5) = 2(x + 1) x 1 x 2 + 2x + 5 = x + 1 x 2 + 2x x 2 + 2x + 5 y = x 2 + 2x + 5 dy = 2(x + 1)dx x + 1

1 26 ( ) ( ) 1 4 I II III A B C (120 ) ( ) 1, 5 7 I II III A B C (120 ) 1 (1) 0 x π 0 y π 3 sin x sin y = 3, 3 cos x + cos y = 1 (2) a b c a +

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h


t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

8 300 mm 2.50 m/s L/s ( ) 1.13 kg/m MPa 240 C 5.00mm 120 kpa ( ) kg/s c p = 1.02kJ/kgK, R = 287J/kgK kPa, 17.0 C 118 C 870m 3 R = 287J

18 ( ) ( ) [ ] [ ) II III A B (120 ) 1, 2, 3, 5, 6 II III A B (120 ) ( ) 1, 2, 3, 7, 8 II III A B (120 ) ( [ ]) 1, 2, 3, 5, 7 II III A B (

Gmech08.dvi

untitled

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

08-Note2-web

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P

Kroneher Levi-Civita 1 i = j δ i j = i j 1 if i jk is an even permutation of 1,2,3. ε i jk = 1 if i jk is an odd permutation of 1,2,3. otherwise. 3 4

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

δ ij δ ij ˆx ˆx ŷ ŷ ẑ ẑ 0, ˆx ŷ ŷ ˆx ẑ, ŷ ẑ ẑ ŷ ẑ, ẑ ˆx ˆx ẑ ŷ, a b a x ˆx + a y ŷ + a z ẑ b x ˆx + b

重力方向に基づくコントローラの向き決定方法

第138期事業報告書

Untitled

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

0.6 A = ( 0 ),. () A. () x n+ = x n+ + x n (n ) {x n }, x, x., (x, x ) = (0, ) e, (x, x ) = (, 0) e, {x n }, T, e, e T A. (3) A n {x n }, (x, x ) = (,

P F ext 1: F ext P F ext (Count Rumford, ) H 2 O H 2 O 2 F ext F ext N 2 O 2 2

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

KENZOU

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α


微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

5. F(, 0) = = 4 = 4 O = 4 =. ( = = 4 ) = 4 ( 4 ), 0 = 4 4 O 4 = 4. () = 8 () = 4

II 2 II

() (, y) E(, y) () E(, y) (3) q ( ) () E(, y) = k q q (, y) () E(, y) = k r r (3).3 [.7 ] f y = f y () f(, y) = y () f(, y) = tan y y ( ) () f y = f y

2 1 x 1.1: v mg x (t) = v(t) mv (t) = mg 0 x(0) = x 0 v(0) = v 0 x(t) = x 0 + v 0 t 1 2 gt2 v(t) = v 0 gt t x = x 0 + v2 0 2g v2 2g 1.1 (x, v) θ

05Mar2001_tune.dvi

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =

untitled

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

Part () () Γ Part ,

untitled

ac b 0 r = r a 0 b 0 y 0 cy 0 ac b 0 f(, y) = a + by + cy ac b = 0 1 ac b = 0 z = f(, y) f(, y) 1 a, b, c 0 a 0 f(, y) = a ( ( + b ) ) a y ac b + a y

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

Korteweg-de Vries

2.5 (Gauss) (flux) v(r)( ) S n S v n v n (1) v n S = v n S = v S, n S S. n n S v S v Minoru TANAKA (Osaka Univ.) I(2012), Sec p. 1/30

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)


ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

2 (1) a = ( 2, 2), b = (1, 2), c = (4, 4) c = l a + k b l, k (2) a = (3, 5) (1) (4, 4) = l( 2, 2) + k(1, 2), (4, 4) = ( 2l + k, 2l 2k) 2l + k = 4, 2l

2011de.dvi

Transcription:

1. 1 213 1 6 1 3 1: ( ) 2: 3: SF 1 2 3 1: 3 2 A m

2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP j AP j 2 AP j (3 ) ( x = OP): F = mgψ(p) AP 2 AP dv = mg AP ψ(x) x OA x OA 3 dxdydz (1) A (1) Q n j=1 n ψ(p j ) j OPj j=1 ψ(p j ) j

3. 3 M OQ = 1 M ψ(p) OP dv ( ) M = ψ(p)dv ψ(p)( OP OA) dv = ψ(p) OP dv OA = ψ(p) O dv M OA ψ(p) dv Q M A F = mm G AQ AQ 2 AQ = = mg 1 M ( 1 mm G 1 M ψ(x)(x OA) dv ψ(x)(x 3 OA) dv M ψ(p) OP dv ) OA ψ(p) OP dv OA 3 (1) 3 1 O ψ(x) r = x ψ(x) = ρ(r) 2 (1) 1 2

3. 4 R x = (r cos φ cos θ)e 1 + (r sin φ cos θ)e 2 + (r sin θ)e 3 ( r R, φ < 2π, π/2 θ π/2) (2) e 1, e 2, e 3 e 3 OA e 1, e 2 A = O OA OA = OA e 3 D(x)/D(r, φ, θ) D(x) D(r, φ, θ) = = r 2 cos θ cos φ cos θ r sin φ cos θ r cos φ sin θ sin φ cos θ r cos φ cos θ r sin φ sin θ sin θ r cos θ cos φ cos θ sin φ cos φ sin θ sin φ cos θ cos φ sin φ sin θ sin θ cos θ = r 2 cos θ(cos 2 φ cos 2 θ + sin 2 φ sin 2 θ + cos 2 φ sin 2 θ + sin 2 φ cos 2 θ) = r 2 cos θ ( ) x OA = (r cos φ cos θ)e 1 + (r sin φ cos θ)e 2 + (r sin θ OA )e 3 x OA 2 = r 2 cos 2 φ cos 2 θ + r 2 sin 2 φ cos 2 θ + (r sin θ OA ) 2 = r 2 2r OA sin θ + OA 2 (1) (2) : F = mg ρ(r) (r cos φ cos θ)e 1 + (r sin φ cos θ)e 2 + (r sin θ OA )e 3 W (r 2 2r OA sin θ + OA 2 ) 3/2 r 2 cos θdrdφdθ (3)

3. 5 W = {(r, φ, θ); r R, φ < 2π, π/2 θ π/2} 2π cos φ dφ = 2π sin φ dφ = F e 1, e 2 e 3 φ F = 2πmGe 3 R π/2 dr π/2 ρ(r)r 2 (r sin θ OA ) cos θ (r 2 2r OA sin θ + OA 2 ) 3/2 dθ (4) f(t) (t > ) f(t) = π/2 π/2 (t sin θ 1) cos θ dθ (5) (t 2 2t sin θ + 1) 3/2 f ( ) r = π/2 OA 2 OA π/2 (r sin θ OA ) cos θ (r 2 2r OA sin θ + OA 2 ) 3/2 dθ (4) f(t) F = 2πmG ( ) R r OA e 2 3 ρ(r)r 2 f dr (6) OA f(t) u = t 2 2t sin θ + 1 t sin θ 1 = t2 + 1 u 2 t 1 f(t) f(t) = = 1 4t t 2 2t+1 t 2 +2t+1 [ 1 = t2 1 u, cos θdθ = 1 2 2t du t 2 1 u 2u 3/2 (t 2 1) 2 u 2 u ( 1 ) du = 1 (t+1) 2 2t 4t (t 1) 2 ] u=(t+1) 2 u=(t 1) 2 = 1 2t {(t 2 1)u 3/2 u 1/2 }du [ t 2 1 + u u ] u=(t+1)2 u=(t 1) 2

3. 6 = 1 ( t 2 1 + (t + 1) 2 t2 1 + (t 1) 2 ) 2t t + 1 t 1 = 1 ( 2t 2 ) + 2t 2t t + 1 2t2 2t = t 1 t 1 t 1 1 { (t > 1 ), = 2 ( < t < 1 ) (6) F = 4πmG OA 2 e 3 R OA ρ(r)r 2 dr (a b = min{a, b}) (7) s (> ) ˆM(s) ˆM(s) = <r<s ρ(r)dv = s π/2 2π s dr dθ ρ(r)r 2 cos θdφ = 4π ρ(r)r 2 dr π/2 (7) F = m ˆM(R OA )G OA 2 e 3 (8) A=O (r 2 2r OA sin θ + OA 2 ) 3/2 = r 3 (3) F = mg = = mg W R ρ(r)(e 1 cos φ cos θ + e 2 sin φ cos θ + e 3 sin θ) cos θdrdφdθ ρ(r)dr (e 1 + e 2 + e 3 ) = A A A (A ) A ψ(x) ρ(r) r, φ, θ r r

4. 7 4 (8) A OA > R ˆM(R OA ) = ˆM(R) = M F = mm G OA 2 e 3 M ( 1 ) A OA < R ˆM(R OA ) = m ˆM( OA )G F = e 3 OA 2 ˆM( OA ) A A ( 2) R A 2: A r ˆM(s) = 4π 3 s3 ρ (ρ(r) = ρ )

4. 8 F = 4πρ mg OA e 3 3 OA ( ) 2 ( 2 ) ρ(r) < r < T r > R ( 3) OA < T ˆM( OA ) = (8) F = R T 3: ( 3 ) SF ( ) ( 4)

5. 9 4: SF 3 ( ) 2,3 5 ω r m mrω 2 rω 2 g = 9.8 [m/s 2 ] R 1 ω 1 4 [km] = 4. 1 7 [m] R 1 = 4. 17 2π = 2. π 17 [m], ω 1 = 2π 24 6 6 = π 4.32 1 4 [rad/s] 3 SF

5. 1 R 1 ω 2 1 g = 2. π 4.32 2 9.8 1 1 =.343 (9) F 2 F 1 3 F 2 M 2 m mm 2 G/R 2 1 mr 1 ω 2 1 M 2 mm 2 G R 2 1 = mr 1 ω 2 1 g M 1 (= 5.97 1 27 [kg]) (9) mr 1 ω 2 1 =.343 mg =.343 mm 1G R 2 1 = mm 2G R 2 1 M 2 =.343 M 1 (1) ρ 3 = 1.41 1 3 [kg/m 3 ] R 2 (1) ρ 1 = 5.52 1 3 [kg/m 3 ] M 2 = ρ 3 2 = 4π 3 ρ 3R 3 2 =.343 4π 3 ρ 1R 3 1 R 2 = R 1 3.343 ρ 1 ρ 3 =.238 R 1 1/4

5. 11 M 3 R 3 M 3 = 3.32 1 5 M 1, R 3 = 1.5 1 11 [m] = 2.36 1 4 R 1 F 3 F 1 F 3 F 1 = mm 3G/R 2 3 mm 1 G/R 2 1 = M 3 M 1 ( R1 R 3 ) 2 = 3.32 1 5 (1/2.36) 2 1 8 = 5.96 1 4 1 6 M 4 R 2 M 4 =.123 M 1, R 2 = 3.84 1 8 [m] = 6.3 1 1 R 1 F 4 F 4 = M 4 M 1 ( R1 R 4 ) 2 F 1 =.123 (1/6.3) 2 1 2 F 1 = 3.38 1 6 F 1 1 3 F F 3 =.174 F, F 4 = 9.85 1 4 F F 4 17% 1 1 (5.96 1 4 ) [1] 2 (199).