MUFFIN3

Similar documents
OCTAプロジェクト:物質の多階層シミュレーション

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

k m m d2 x i dt 2 = f i = kx i (i = 1, 2, 3 or x, y, z) f i σ ij x i e ij = 2.1 Hooke s law and elastic constants (a) x i (2.1) k m σ A σ σ σ σ f i x

第86回日本感染症学会総会学術集会後抄録(I)

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

all.dvi

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

gr09.dvi


II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

meiji_resume_1.PDF

nsg02-13/ky045059301600033210

液晶の物理1:連続体理論(弾性,粘性)

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat

日本内科学会雑誌第102巻第4号

I II

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

COGNACのコンセプト \(COarse Grained molecular dynamics program developed by NAgoya Cooperation\)


本文/目次(裏白)

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

Ł\”ƒ-2005

第90回日本感染症学会学術講演会抄録(I)

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

F = 0 F α, β F = t 2 + at + b (t α)(t β) = t 2 (α + β)t + αβ G : α + β = a, αβ = b F = 0 F (t) = 0 t α, β G t F = 0 α, β G. α β a b α β α β a b (α β)

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

TOP URL 1

D v D F v/d F v D F η v D (3.2) (a) F=0 (b) v=const. D F v Newtonian fluid σ ė σ = ηė (2.2) ė kl σ ij = D ijkl ė kl D ijkl (2.14) ė ij (3.3) µ η visco

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

I

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.


( )

2 1 1 α = a + bi(a, b R) α (conjugate) α = a bi α (absolute value) α = a 2 + b 2 α (norm) N(α) = a 2 + b 2 = αα = α 2 α (spure) (trace) 1 1. a R aα =

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

 NMRの信号がはじめて観測されてから47年になる。その後、NMRは1960年前半までPhys. Rev.等の物理学誌上を賑わせた。1960年代後半、物理学者の間では”NMRはもう死んだ”とささやかれたということであるが(1)、しかし、これほど発展した構造、物性の

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

TOP URL 1

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

n 2 + π2 6 x [10 n x] x = lim n 10 n n 10 k x 1.1. a 1, a 2,, a n, (a n ) n=1 {a n } n=1 1.2 ( ). {a n } n=1 Q ε > 0 N N m, n N a m

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x

73

Part () () Γ Part ,

chap10.dvi

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

all.dvi

~nabe/lecture/index.html 2

総研大恒星進化概要.dvi

プログラム

Akito Tsuboi June 22, T ϕ T M M ϕ M M ϕ T ϕ 2 Definition 1 X, Y, Z,... 1

( ) Loewner SLE 13 February

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x


( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )


120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2

OHP.dvi

29

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

タイトル

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

untitled

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

_0212_68<5A66><4EBA><79D1>_<6821><4E86><FF08><30C8><30F3><30DC><306A><3057><FF09>.pdf

all.dvi

『共形場理論』

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1)

数学の基礎訓練I

201711grade1ouyou.pdf

5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

量子力学 問題


b3e2003.dvi

q π =0 Ez,t =ε σ {e ikz ωt e ikz ωt } i/ = ε σ sinkz ωt 5.6 x σ σ *105 q π =1 Ez,t = 1 ε σ + ε π {e ikz ωt e ikz ωt } i/ = 1 ε σ + ε π sinkz ωt 5.7 σ


JKR Point loading of an elastic half-space 2 3 Pressure applied to a circular region Boussinesq, n =

tnbp59-21_Web:P2/ky132379509610002944

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

1 1.1 / Fik Γ= D n x / Newton Γ= µ vx y / Fouie Q = κ T x 1. fx, tdx t x x + dx f t = D f x 1 fx, t = 1 exp x 4πDt 4Dt lim fx, t =δx 3 t + dxfx, t = 1

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx

newmain.dvi

The Physics of Atmospheres CAPTER :

ohpr.dvi

untitled

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

Mott散乱によるParity対称性の破れを検証

日本内科学会雑誌第97巻第7号

Transcription:

MUFFIN - MUltiFarious FIeld simulator for Non-equilibrium system - ( )

MUFFIN WG3 - - JCII, - ( ) - ( ) - ( ) - (JSR) - -

MUFFIN sec -3 msec -6 sec GOURMET SUSHI MUFFIN -9 nsec PASTA -1 psec -15 fsec COGNAC -15-1 -9-6 -3 fm pm nm m mm m

MUFFIN - - - -

MUFFIN - (FDM) : - (FEM) :. - - (D/3D). ( D/3D) or - : -,,,,. - : Navier-Stokes, Stokes, Oseen,,.. - :,. - :, -,. - - -.

MUFFIN SuperField. ( ) - DynamicsManager. - MUFFIN SuperField B.C. Dynamics Manager UDF(XML) MUFFIN API ( ) - MUFFIN -

MUFFIN - - cf) XSIL (XML Scientific Interchange) Prof. R.Williams, CACR, Caltech. (Center for Advanced Computing Research)

MUFFIN ( ) PhaseSeparation Electrolyte MEMFluid Elastica GelDyna TURBAN shear PhaseSeparation : GelDyna : TURBAN : Elastica : Electrolyte MEMFluid :

PhaseSeparation : ψ t v ρ t v α = = = ( ψ p α + v ) + ( L α µ α [ { v + ( v) }] t η ) + K, Stokes flow / t =, K. L

=

PhaseSeparation FDM t=1 t=4 t= Flory-Huggins t= t= t=1

PhaseSeparation FDM

( PhaseSeparation FDM ) Macromolecules, 9, 33 (1996) Macromolecules, 3, 4995 (1997) Macromolecules, 3, 4995 (1997) Macromolecules, 9, 33 (1996) Polymer, 4, 111 (1)

J. Electrochem. Soc., 138, 317 (1991) E ( x 1 x ) = κ 1 κ x 1 x 1

(csolv-poly) - Poly1 / Poly / solvent (Poly1 ) - PMMA / PS / MEK (PMMA ) (gs ) - Poly1 / Poly /substrate (better for Poly) - PMMA / PS / ODM (better for PS) (E ) - (h ) -

Electrolyte 3 FDM FEM Electrolyte

Electrolyte FDM t=1 t=1 t=1 t=1 ( )

Electrolyte FEM

Electrolyte FEM : ( ) E E E E

MEMFluid Cα : Cα ( ) = ( vcα ) jα + R1αβ Cβ + Rαβγ CβC t : jα = Lα [ kbt{ Cα + χαβcα Cβ } + ezαcα ( Φ E)] Oseen ( Laplace : [ { v ( v) }] t ) = p + η w + + K } : K = k B T{ Cα + χ αβcα Cβ } α β : Φ = β β β, γ ( v = ) ( ) : j α : L α : Z α : χ αβ : Φ : E : MEMS (Micro Electro Mechanical System), Lab-on-a chip. Micro reactor, TAS (Total Analysis System), Bio chips. γ

MEMFluid Y A C 4sec 6sec 8sec 1sec 16cases: Productivity (Pc) of C-ion P=1.,.5,5.,1. vs logr and log P R=1e-3,1e-,1e-1,1. Results: For increase Pc. R >.4: P->1. R <.4: P->1.

MEMFluid : ε veo = ςe Helmholtz-Smouluchowski eq. ηw -potential : -1 Poisson-Boltzmann eq. (1-1 electrolyte) ς = k T σ ln[ (8Cεk T ) σ ( 8Cεk B 1 / + + 1) 1 / Ze B BT - ( ) Ze ς / kbt << 1 ς 5( mv ) { σ ς = εκ ZαCα e α 1 / κ = ( ) εk T B : / : l b l = e ( k B 1 Tεl) 3 1 ] : P=1., R=1.

Elastica, 3 FEM F d { u ( x) } = d x{ f } i V f V d 1 = G x ) e δ e + ij ij ll d d xρ( x) g u ( x) i K( x) i ( e ) ( ll e ij = 1 ui x j u + x St d d 1 xt i u i ( x) ( e ) ( ) ii + D nin jeij + D 3(ell nin jeij ) + D4nleil nkeik D eijeij f = D1 + 5 j j

+ + = xy zx yz zz yy xx xy zx yz zz yy xx e e e e e e m m k m k l m k m k l l l n µ µ σ σ σ σ σ σ ( ) ( ) ij ij ik k il l ij j i ll ij j i ii e D e e n D n e ) e n n D (e e n n D e D f 5 4 3 1 + + + + = ( ) ( ) = = + = + = = m D m D m k l D l m k n D m k D 5 4 3 1 µ µ

Elastica : SUSHI : 1( ) z, x,y x,y, z :

Elastica :.µm 1.µm

Elastica : Morphology (PP + Elastomer) F = G e ij 1 δ ije d ll + K 1 e kk (a)dispersed (b)bi-continuous (C) by SUSHI Young K = e ij 1 δ ije d 1 e kk ll G + F 1 e kk modulus E analytic-model sphere 3.753 series bi-continuous 34.67 Davies sushi1 91.84 sushi 5.99 sushi: volume fraction is reset to and 1 using a threshold value.

GelDyna : ς ( v p v s ) = φ p + : ς ( v s v p ) = ( 1 φ ) : [ φ v + ( 1 φ ) v ] = p s p σ ( ) v p : v s : φ : p : ς : σ : k BT d 1 φ = d x[(1 φ ) ln( 1 φ ) + χφ (1 φ ) + ν ( tr v φ F W + φ σ ij = [ φ f m ' ( φ ) f m ( φ )] δ ij + ν ( W ij δ ij ) φ (Flory-Huggins): ( φ ) = (1 φ ) ln( 1 φ ) + χφ (1 φ ) W ij : φ : χ : : ν f m ln 1 φ φ )]

GelDyna (DDS) NIPA D 3D

TURBAN =TURBidity ANalyzer TURBAN TURBAN : (i) (ii) Maxwell

: - 18 3 - = 4-7nm - -PE : TURBAN PE

MUFFIN MILK ( ) - 3D/D - - NASTRAN BULK FILTER - NASTRAN BULK UDF. HyperMesh UDF GOURMET MeshFieldConvertor (IMPORT/EXPORT_...) -SUSHI

udfavs MUFFIN MeshFieldShow (SHOW_...) - - MeshFieldPlot (PLOT_...) - UDF AVS - - - (gnuplot ). - - - ModelingSupporter, analyze_reactor,

MUFFIN : SUSHI MUFFIN PASTA COGNAC

MUFFIN (MUltiFarious FIeld simulator for Non-equilibrium system) (.1 m 1mm, sec) PhaseSeparation, Electrolyte, MEMFluid, Elastica, GelDyna, TURBAN MUFFIN MUFFIN