120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2

Similar documents
18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

46 4 E E E E E 0 0 E E = E E E = ) E =0 2) φ = 3) ρ =0 1) 0 2) E φ E = grad φ E =0 P P φ = E ds 0

II 2 II

Quz Quz

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( )

B line of mgnetic induction AB MN ds df (7.1) (7.3) (8.1) df = µ 0 ds, df = ds B = B ds 2π A B P P O s s Q PQ R QP AB θ 0 <θ<π

Gmech08.dvi

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

( : December 27, 2015) CONTENTS I. 1 II. 2 III. 2 IV. 3 V. 5 VI. 6 VII. 7 VIII. 9 I. 1 f(x) f (x) y = f(x) x ϕ(r) (gradient) ϕ(r) (gradϕ(r) ) ( ) ϕ(r)

c y /2 ddy = = 2π sin θ /2 dθd /2 [ ] 2π cos θ d = log 2 + a 2 d = log 2 + a 2 = log 2 + a a 2 d d + 2 = l

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

2 1 x 1.1: v mg x (t) = v(t) mv (t) = mg 0 x(0) = x 0 v(0) = v 0 x(t) = x 0 + v 0 t 1 2 gt2 v(t) = v 0 gt t x = x 0 + v2 0 2g v2 2g 1.1 (x, v) θ

δ ij δ ij ˆx ˆx ŷ ŷ ẑ ẑ 0, ˆx ŷ ŷ ˆx ẑ, ŷ ẑ ẑ ŷ ẑ, ẑ ˆx ˆx ẑ ŷ, a b a x ˆx + a y ŷ + a z ẑ b x ˆx + b

2.4 ( ) ( B ) A B F (1) W = B A F dr. A F q dr f(x,y,z) A B Γ( ) Minoru TANAKA (Osaka Univ.) I(2011), Sec p. 1/30

i

G:/SHIRAFUJI/テキスト類/EM1999/ALL/em99ps.dvi

l µ l µ l 0 (1, x r, y r, z r ) 1 r (1, x r, y r, z r ) l µ g µν η µν 2ml µ l ν 1 2m r 2mx r 2 2my r 2 2mz r 2 2mx r 2 1 2mx2 2mxy 2mxz 2my r 2mz 2 r

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

2.5 (Gauss) (flux) v(r)( ) S n S v n v n (1) v n S = v n S = v S, n S S. n n S v S v Minoru TANAKA (Osaka Univ.) I(2012), Sec p. 1/30

notekiso1_09.dvi

Untitled

7-12.dvi

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

. p.1/14

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

meiji_resume_1.PDF

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

(1) D = [0, 1] [1, 2], (2x y)dxdy = D = = (2) D = [1, 2] [2, 3], (x 2 y + y 2 )dxdy = D = = (3) D = [0, 1] [ 1, 2], 1 {

Gmech08.dvi


all.dvi

untitled

F S S S S S S S 32 S S S 32: S S rot F ds = F d l (63) S S S 0 F rot F ds = 0 S (63) S rot F S S S S S rot F F (63)

Chap11.dvi

Radiation from moving charges#1 Liénard-Wiechert potential Yuji Chinone 1 Maxwell Maxwell MKS E (x, t) + B (x, t) t = 0 (1) B (x, t) = 0 (2) B (x, t)

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2


, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,



TOP URL 1

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

mugensho.dvi

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

Gmech08.dvi

Kroneher Levi-Civita 1 i = j δ i j = i j 1 if i jk is an even permutation of 1,2,3. ε i jk = 1 if i jk is an odd permutation of 1,2,3. otherwise. 3 4

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)


(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0


1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n

29

sin.eps

液晶の物理1:連続体理論(弾性,粘性)

elemag.dvi

all.dvi

1 1. x 1 (1) x 2 + 2x + 5 dx d dx (x2 + 2x + 5) = 2(x + 1) x 1 x 2 + 2x + 5 = x + 1 x 2 + 2x x 2 + 2x + 5 y = x 2 + 2x + 5 dy = 2(x + 1)dx x + 1

untitled

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

( ) LAN LAN tex ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

A

f (x) x y f(x+dx) f(x) Df 関数 接線 x Dx x 1 x x y f f x (1) x x 0 f (x + x) f (x) f (2) f (x + x) f (x) + f = f (x) + f x (3) x f

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

i I

1 2 1 No p. 111 p , 4, 2, f (x, y) = x2 y x 4 + y. 2 (1) y = mx (x, y) (0, 0) f (x, y). m. (2) y = ax 2 (x, y) (0, 0) f (x,

i

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

応力とひずみ.ppt

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

Quiz x y i, j, k 3 A A i A j A k x y z A x A y A z x y z A A A A A A x y z P (x, y,z) r x i y j zk P r r r r r r x y z P ( x 1, y 1, z 1 )

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

i

DVIOUT

Note.tex 2008/09/19( )

( 4) ( ) (Poincaré) (Poincaré disk) 1 2 (hyperboloid) [1] [2, 3, 4] 1 [1] 1 y = 0 L (hyperboloid) K (Klein disk) J (hemisphere) I (P

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h


(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

PowerPoint プレゼンテーション

1 12 ( )150 ( ( ) ) x M x 0 1 M 2 5x 2 + 4x + 3 x 2 1 M x M 2 1 M x (x + 1) 2 (1) x 2 + x + 1 M (2) 1 3 M (3) x 4 +

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)

Transcription:

9 E B 9.1 9.1.1 Ampère Ampère Ampère s law B S µ 0 B ds = µ 0 j ds (9.1) S rot B = µ 0 j (9.2) S Ampère Biot-Savart oulomb Gauss Ampère rot B 0 Ampère µ 0 9.1 (a) (b) I B ds = µ 0 I. I 1 I 2 B ds = µ 0 ( I 1 + I 2 ) 119

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2 I 1 B ds = µ 0 I 1 I 1

9.1 121 (f) I 2 0 I B ds =2µ 0 I. I n nµ 0 I 9.2 I O r B B = µ 0I 2πr µ 0 I B ds = 2πr ds = µ 0I ds = µ 0I 2πr 2πr 2πr = µ 0I r µ 0 B θ I O r ds B O dφ φ ds 9.2: 9.2 I B ds B θ B ds = B ds cos θ O ds O dφ B ds = B ds cos θ = Br dφ (9.3)

122 9 r O r B = µ 0I 2πr B ds = B ds cos θ = 2π 0 µ 0 I 2πr r dφ = µ 0I 2π dφ = µ 0 I 2π 0 O ds O dφ (9.3) µ 0 I Stokes Ampère Stokes A(r) S n rot A n ds = A ds. (9.4) S Gauss S i 9.3: Stokes 9.3 S N S i S i n i i S i (rot A) n i S i = A ds ( i =1, 2,,N) i

9.1 123 S N S i N N (rot A) n i S i = A ds i=1 i=1 i N Stokes (9.4) Stokes Stokes X, Y, Z x, y, z (Xdx + Y dy + Zdz) = [ l ( Z y Y z ) + m ( X z Z x l, m, n ds ) ( Y + n x X )] ds (9.5) y Ampère Ampère (9.1) Stokes (9.4) Ampère S rot B ds = µ 0 S j ds S rot B = µ 0 j. Ampère (9.2) 9.1 I r B(r) I B r B(r) r Ampère B(r) B(r) 2πr = µ 0 I B(r) = µ 0I 2πr.

124 9 9.2 9.4 a (1) I (2) I a ( 1) B I r B ( 2) 0 a r B 0 a r 9.4: r Ampère B(r) (1) r<a r>a I B(r) 2πr =0 B(r) =0 (r<a) B(r) 2πr = µ 0 I B(r) = µ 0I ( r>a) 2πr (2) a I j = I πa 2 r<a I r>a I Ampère B(r) 2πr = µ 0 j πr 2 = µ 0 I πr2 πa 2 B(r) = µ 0Ir 2πa 2 B(r) 2πr = µ 0 I B(r) = µ 0I 2πr ( r<a) ( r>a)

9.1 125 (1) (2) 9.4 9.3 (1) a L n I (2) (1) E B out F z θ 2 θ θ 1 D B in z 2 dz P z 1 9.5: (1) 9.5 z z z P z z z +dz P db 8.3 z db = nµ 0Ia 2 dz 2(a 2 + z 2 ) 3/2 dz P z θ z = a tan θ dz = a dθ sin 2 θ, 1 sin θ (a 2 + z 2 = ) 1/2 a P B z B = nµ 0Ia 2 2 = nµ 0I 2 z2 z 1 θ2 θ 1 dz (a 2 + z 2 ) 3/2 sin θ dθ = nµ 0I 2 ( cos θ 2 cos θ 1 )

126 9 θ 1 θ 2 P (2) (1) θ 1 π θ 2 0 B = nµ 0I 2 ( cos 0 cos π )=nµ 0 I. Ampère 9.5 DEF D EF D EF EF DEF Ampère F DE EF 0 Ampère B ds = B in = nµ 0 I DEF B in = nµ 0 I EF DEF Ampère B out Ampère B ds = B in B out = nµ 0 I DEF B in = nµ 0 I B out =0 9.4 9.6 R a N I B r B(r) r Ampère B(r) 2πr B(r) N I NI Ampère B ds =2πr B(r) =µ 0 NI

9.1 127 a r 9.6: r B(r) = µ 0NI 2πr 9.1.2 Ampère P A A φ = B ds P A P 9.7 P A I S 0 S 1 S A φ 0 = B ds φ 1 = P( 0 ) A P( 1 ) B ds. µ 0 I P 1 A A 0 P

128 9 A 1 S 0 I P 9.7: I Ampère A P B ds + B ds = µ 0 I P( 1 ) A( 0 ) φ 1 0 P A P A B ds = B ds = φ 0. A( 0 ) P( 0 ) φ 1 φ 0 = µ 0 I φ 1 = φ 0 + µ 0 I A B ds = P( 1 ) A P( 0 ) B ds + µ 0 I P A µ 0 I 1 I S S 0 P φ m = A P B ds (9.6) A φ m magnetic potential B = grad φ m (9.7)

9.2 129 9.2 9.2.1 Gauss Gauss S B 0 B ds = 0 (9.8) S div B = 0 (9.9) Maxwell j B Ampère rot B = µ 0 j rot B Ampère B Ampère Gauss Gauss div E = ρ/ε 0 rot E =0 Gauss 9.8 I I ds db db = µ 0 4π I ds r r 3 Biot-Savart ds db Biot-Savart r ds I ds 9.8 S S S S ds 1 ds 2 db 1 db 2 ds 1 ds 2 dφ 1 =db 1 ds 1, dφ 2 =db 2 ds 2,

130 9 db S ds 2 I ds I ds 1 9.8: Gauss dφ 1 dφ 2 dφ 1 +dφ 2 =db 1 ds 1 +db 2 ds 2 =0. S S db i ds i =0 i I ds I ds S 0 db ds =0. I ds, S S I I ds I B I ds db S B ds =0 S j Gauss Gauss div B = 0

9.2 131 9.2.2 B Gauss A B = rot A (9.10) vector potential j A(r) = µ 0 4π j(r ) r r dv (9.11) div (rot A) =0 A A z y A y z A x rot A = z A z x A y x A x y rot A div (rot A) = (rot A) x + (rot A) y + (rot A) z x y z = ( Az x y A ) y + ( Ax z y z A z x ( 2 ) ( A z = x y 2 A z 2 ) A x + y x y z 2 A x z y ) + ( Ay z + x A ) x y ) ( 2 A y z x 2 A y x z 0 A div (rot A) =0 div B =0 B B = rot A (9.10) Ampère (9.2) rot (rot A) =µ 0 j (9.12)

132 9 x [ rot (rot A)] x = y (rot A) z z (rot A) y = ( Ay y x A ) x ( Ax y z z A ) z x = 2 A x y 2 2 A x z 2 + ( Ay x y + A ) z z (9.12) x 2 A x y 2 2 A x z 2 + ( Ay x y + A ) z z = µ 0 j x 2 A x / x 2 2 A x / x 2 2 A x x 2 2 A x y 2 (9.12) x 2 A x z 2 = 2 A x, ( Ax x x + A y y + A ) z z 2 A x + x (div A) =µ 0 j x y z = (div A) x 2 A k + k (div A) =µ 0j k ( k = x, y, z ) (9.13) B (9.10) A ψ A A = A + grad ψ (9.14) rot (grad ψ) =0 rot A = rot A + rot (grad ψ) = rot A = B ψ A = A + grad ψ A A ψ grad ψ Poisson (9.14) B = rot A A div A =0

9.2 133 A (9.13) 0 Poisson 2 A x = µ 0 j x, 2 A y = µ 0 j y, 2 A z = µ 0 j z. (9.15) Poisson 2 φ = ρ ε 0 Poisson φ(r) = 1 ρ(r ) 4πε 0 r r dv ε 0 1/µ 0 ρ j k j A Poisson (9.15) A(r) = µ 0 4π j(r ) r r dv A B = rot A 9.5 I r P z +L z B dz O r P L A 9.9: 9.9 z I r P AB O z z = L A z = L B

134 9 AB P (9.11) j(r )dv = I ds = I dz e z z A(r) = µ 0I 4π L L dz e z (x x ) 2 +(y y ) 2 +(z z ) 2 x y 0 z A x = A y =0, A z = µ 0I r 4π log 2 + L 2 + L r 2 + L 2 L. L L r r 2 + L 2 = L ( 1+ 1 2 r 2 ) L 2 + log r 2 + L 2 + L r 2 + L 2 L log (2L)2 + r 2 r 2 A z log (2L)2 r 2 = 2 log 2L 2 log r A z µ 0I 2π log 2L µ 0I 2π log r L A z µ 0 I/(2π) log 2L P A x = A y =0, A z = µ 0I 2π log x 2 + y 2 + z 2 B = rot A 9.6 Q(r ) I ds P(r) Q(r ) I ds P(r) j A (9.11) j(r )dv = I ds da(r) = µ 0I 4π ds r r db da db = rot (da) = µ 0I 4π rot ds r r.

9.2 135 rot (da) P(r) r =(x, y, z) r =(x,y,z ) ds =(dx, dy, dz ) ds/ r r z y ( dz ) y r r = ( y ( = dz 1 ) 2 = (y y )dz r r 3 dz ) (x x ) 2 +(y y ) 2 +(z z ) 2 2(y y ) [(x x ) 2 +(y y ) 2 +(z z ) 2 ] 3/2 x [ ] ds rot r r = ( dz ) x y r r ( dy ) z r r = (z z )dy (y y )dz [ ds (r r ] ) r r 3 = r r 3 (db ) x = µ [ 0 I ds (r r ] ) 4π r r 3 x y z db = µ 0 4π I ds (r r ) r r 3 Bio-Savart 9.7 xy a I x, 9.10 z xy Q I ds P da Q a r = a xy θ = π/2 x φ I ds = Iadφ P yz φ = ϕ = π/2 Q P R P da (da) r = µ 0Ia 4πR sin(ϕ φ) sin θ dφ = µ 0Ia cos φ sin θ dφ 4πR (da) θ = µ 0Ia 4πR sin(ϕ φ) cos θ dφ = µ 0Ia cos φ cos θ dφ 4πR (da) ϕ = µ 0Ia 4πR cos(ϕ φ)dφ = µ 0Ia sin φ dφ 4πR

136 9 z P e r I θ r R e θ x O φ dφ Q Ids y 9.10: ϕ = π/2 A φ 0 2π R φ P r a 1/R a/r 1 R = 1 r 2 + a 2 2ar cos(ϕ φ) sin θ 1 r 2 + a 2 2ar sin φ sin θ = = 1 [1+ a sin φ sin θ + ]. r r a/r φ 0 2π A r = A θ =0, A ϕ = µ 0Ia 2 4r 2 sin θ z k p m = Iπa 2 k A ϕ = µ 0p m 4πr 2 sin θ, A = µ 0 4π r P p m r r 3