QMII_10.dvi

Similar documents
TOP URL 1

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

TOP URL 1

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2


) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

05Mar2001_tune.dvi

LLG-R8.Nisus.pdf

all.dvi


t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

meiji_resume_1.PDF

untitled

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

all.dvi

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

TOP URL 1

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

Radiation from moving charges#1 Liénard-Wiechert potential Yuji Chinone 1 Maxwell Maxwell MKS E (x, t) + B (x, t) t = 0 (1) B (x, t) = 0 (2) B (x, t)

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

arxiv: v1(astro-ph.co)

201711grade1ouyou.pdf

( ) s n (n = 0, 1,...) n n = δ nn n n = I n=0 ψ = n C n n (1) C n = n ψ α = e 1 2 α 2 n=0 α, β α n n! n (2) β α = e 1 2 α 2 1

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

Note.tex 2008/09/19( )

Untitled

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

振動と波動

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

0406_total.pdf

Gmech08.dvi

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

『共形場理論』

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

chap1.dvi


18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

all.dvi

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

Gmech08.dvi

量子力学 問題

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

TOP URL 1

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (


(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

³ÎΨÏÀ

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

chap03.dvi

( ) ( )

Gmech08.dvi

Part () () Γ Part ,

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

Microsoft Word - 11問題表紙(選択).docx

1 1 u m (t) u m () exp [ (cπm + (πm κ)t (5). u m (), U(x, ) f(x) m,, (4) U(x, t) Re u k () u m () [ u k () exp(πkx), u k () exp(πkx). f(x) exp[ πmxdx

Microsoft Word - 信号処理3.doc

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

( )

構造と連続体の力学基礎

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

II 2 II

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K

30

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx

IA

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

8 300 mm 2.50 m/s L/s ( ) 1.13 kg/m MPa 240 C 5.00mm 120 kpa ( ) kg/s c p = 1.02kJ/kgK, R = 287J/kgK kPa, 17.0 C 118 C 870m 3 R = 287J

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ

pdf

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

keisoku01.dvi

: , 2.0, 3.0, 2.0, (%) ( 2.

II 1 II 2012 II Gauss-Bonnet II

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [


z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

2000年度『数学展望 I』講義録

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

( ) ,

4‐E ) キュリー温度を利用した消磁:熱消磁

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

Transcription:

65 1 1.1 1.1.1 1.1 H H () = E (), (1.1) H ν () = E ν () ν (). (1.) () () = δ, (1.3) μ () ν () = δ(μ ν). (1.4) E E ν () E () H 1.1: H α(t) = c (t) () + dνc ν (t) ν (), (1.5) H () () + dν ν () ν () = 1 (1.6)

66 1 ν k k k 1.1. L k k = π L, = ( x, y, z ) (1.7) k u box (x) = 1 L 3/ exp(i k x) (1.8) L 3 1 1. k z = k y =( x, y, ) k k k+dk dk k k +dk L k x (1.7) k 1.: x y z ( L π ) 3 d 3 k = ( L π ) 3 dkk si θ dθ dφ = ( L π ) 3 dkk dω (1.9) dω = si θ dθ dφ E = k k dk = de L3 x y z 8π 3 k de dω (1.1)

1.1. 67 E E +de Ω Ω +dω ρ box (E)dE dω = L3 k de dω (1.11) 8π3 ρ box (E) E L = L π k (1.1) u k (x) = ( ) L 3/ li u box (x) = L π 1 exp(i k x). (1.13) (π) 3/ (π) 3 ( u k,u k ) = δ(k k ). (1.14) E E +de Ω Ω +dω ρ(e)de dω = k de dω, k = E (1.15) p =k 1 u p (x) = (π) 3/ exp(i k x) = 1 exp (i p ) (π) 3/ x (1.16) (π) 3 ( u p,u p ) = δ(p p ) (1.17)

68 1 1. 1..1 H (x,t) = V (x) e iωt + V (x) e +iωt. (1.18) H(t) (1.5) H c (t) t = c () = δ i, c ν () =. (1.19) c (1) (t) = 1 t i c (1) ν (t) = 1 i t dt V i (t ) = V i e i(ω i ω)t 1 (ω i ω) dt V νi (t ) = V νi e i(ω νi ω)t 1 (ω νi ω) (V i ) ei(ω i +ω)t 1 (ω i + ω) (V iν ) ei(ω νi +ω)t 1 (ω νi + ω) (1.) (1.1) ω i = E() E () i, V i = () V i () (V i ) = () V i () (1.) E ω νi = E() ν E () i V νi = ν () V i () (V iν ) = ν () V i () (1.3) hω E ν () (1.) (1.1) c (1) (t) t () 1.3 ν ν ν +dν c (1) ν (t) dν E ν () >E () i (1.1) ω ω νi = E() ν E () i E i () 1.3: (1.4)

1.. 69 (1.1) c ν (t) dν = [ ] si (ωνi ω)t/ V νi dν. (1.5) (ω νi ω) E ν E ν +de ν ρ(e ν )de ν E ν E i +ω c ν (t) ρ(e ν )de ν = [ ] si (ωνi ω)t/ V (ω νi ω) νi ρ(e ν )de ν (1.6) ρ(e ν ) t [ si (ωνi ω)t/ (ω νi ω) V νi li t ] t π δ(ω νi ω) (t ) (1.7) c ν (t) ρ(e ν )de ν = π V νi ρ(e ν ) t Eν E i +ω. (1.8) t w ν = π V νi ρ(e ν ) (1.9) Eν E i +ω 1.. E H (x,t) = V (x) e iωt + V (x) e +iωt H t = 1.4 1 c ν () = δ(ν ν 1 ) (1.3) hω () E ν () E ν1 c (1) ν (t) = δ(ν ν 1 )+ 1 t dt V νν1 (1.31) i 1.4:

7 1 (1.1) c (1) e i(ω νν 1 ω)t 1 ν (t) = V νν1 (V (ω νν1 ω) ν1 ν) ei(ω νν 1 +ω)t 1 (1.3) (ω νν1 + ω) E ν E ν1 +ω, E ν E ν1 ω (1.33) E ν H ω ω (1.9) w ν = π V νν 1 ρ(e ν ) (1.34) Eν E ν1 +ω w ν = π V νν 1 ρ(e ν ) Eν E ν1 ω (1.35) E ν1 H (t) ω E ν E ν1 +ω 1.4 (1.34) w ν1 ν = π V ν ν 1 ρ(e ν ). (1.36) E ν E ν1 +ω E ν H (t) ω E ν1 E ν ω 1.4 (1.35) w ν ν 1 = π V ν 1 ν ρ(e ν1 ). (1.37) E ν1 E ν ω ν 1 ν ν () V ν() 1 = ν() 1 V ν () V ν ν 1 = V ν1 ν (1.38) w ν1 ν ρ(e ν ) = w ν ν 1 ρ(e ν1 ) (1.39) detailed balace

1.3. 71 1.3 1.3.1 α = e c 1 137 H = H + eφ(x) e c A p (1.4) φ A ε ( ) ω A = A ε cos c x ωt. (1.41) ε = A = (1.4) (1.4) e c A p = e [ c A ε p exp (i ω ) ( c x iωt + exp i ω ) ] c x + iωt (1.43) H (x,t) = V (x) e iωt + V (x) e +iωt (1.44) V (x) = ea ( c exp +i ω ) c x ε p (1.45) V (x) = ea ( c exp i ω ) c x ε p (1.46)

7 1 1.3. t w i = π V i δ(e E i ω) (1.47) w i = π V i ρ(e ) E E i +ω (1.48) (1.41) absorptio cross sectio = (1.49) U U = 1 ( ) E 4π + B (1.5) 4π E B E = 1 c A, B = A (1.51) (1.41) σ abs σ abs = c U = 1 π ω π V i δ(e E i ω) = 4π ω e c 1 ω π c A ( exp i ω )ε c x p i ω c A (1.5) δ(e E i ω) (1.53)

1.3. 73 1.3.3 E = (Zαc) = 1 a B /Z Zαc 1 R Zαc R c ω = E λ = ω/(π) 4πR Zα, R λ Zα 4π α 1/137 (1.53) x R x R ω Zα x c Z exp (i ω ) c x = 1+i ω x + (1.54) c 1 exp (i ω ) c x ε p i ε p i (1.55) p x [ x, H ] = i p. (1.56) z ε x ε p = p x (1.55) ε p i = p x i = i [ x, H ] i [ x, H ] i = ( xh H x ) i = (E () i E () ) x i ε p i = i ω i x i, ω i = E() E () i (1.57) electric dipole approxiatio (1.53) σ abs = 4π αω i x i δ(ω ω i ). (1.58)

74 1 1.3.4 photoelectric effect photoelectro (1.53) (1.11) k f ρ(e)de dω = L3 8π 3 k f de dω (1.59) Ω Ω +dω dσ dω = 4π α ω k f exp (i ω ) c x k ε p i f L 3 (1.6) (π) 3 K k f exp (i ω ) c x ε p i = ε d 3 x ( ) 3/ Z ( ) ( exp ik a B L f x exp i ω ( ) [exp c x i Zr )] a B ε [ ( ε exp i ω ) ] [ ( )] ( ) c x =, exp ik f x = ik f exp ik f x ε q = k f ω c (1.61) dσ dω = (ε k f ) 3e k f cω ( ) 5 Z 1 [ ] a B Z 4 (1.6) ab + q

1.4. 75 1.4 1.4.1 H(t) c (t) i ψ(x,t) = H(x,t) ψ(x,t). (1.63) H(x,t) H(x,t) E ( ψ (x,t) = exp i E ) t u (x) (1.64) E (t) t [ ψ (x,t) = u (x) exp i E (t ] ) dt (1.65) t (1.63) ψ(x,t) ψ(x,t) = t [ c (t)u (x,t) exp i E (t ] ) dt. (1.66) u H(t) u (x,t) dc (t) = ( c dt (t) u, u ) t [ exp i E (t ) E (t ] ) dt (1.67) u H(t)u (t) =E (t)u (t) H(t) u (t)+h(t) u (t) = E (t) u (t)+e (t) u (t) u ( u, u ) = 1 ( u E E, H ) u ( ) (1.68) = ( u,u )=1 ( u, u ) ( u ) +,u = ( u, u ) ( + u, u ) =

76 1 z z + z =Rez γ(t) ( u, u ) = i dγ (1.69) dt dc (t) dt = i dγ (t) c dt (t) ( ) + c (t) 1 ( u E E, H u ) t [ exp i E (t ) E (t ] ) dt (1.7) E E t = u i t u c (t) i ( (E E i ) u, H ) [ u i exp( i E E ) ] i t 1 (1.71) adiabatic approxiatio 1.4. 1.5 / E () E () i H H φ i (x) H φ i (x) = E i φ i (x) (1.7) t H 1.5: φ i (x) H = H + H φ i (x)

1.4. 77 H = H + H Hψ (x) = E ψ (x). (1.73) φ i (x) φ i (x) = c ψ (x), c = (ψ,φ i ) = d 3 x ψ (x) φ i (x) (1.74) ψ (x) w = dx ψ (x) φ i (x) (1.75) sudde approxiatio F Fx H = p + 1 ω x Fx = p + 1 ω (x x ) + C, x = F ω. (1.76) 1.6 x x 1.6 C u (x) u (x x ) V( x) u (x) c u (x x ) = w = c w = [ + dxu (x x )u (x)] (1.77) s = x b, s = x b, b = x 1.6: ω x (1.78)

78 1 H(s) u (x) = ( ) 1 1/4 1 πb /! e s H (s), H (s) = ( 1) e s d e s ds (1.79) + dxu (x x )u (x) = ( 1) +!π e s / + dse s s d e s +s s ds = s + dse s s d e s +s s ds dse s +s s = s πe s /4 w = 1! s e s / = σ! e σ, σ = s = F ω 3 (1.8) 1 w = e σ = = σ! = e σ e +σ = 1. (1.81) w (1.8) σ σ w = e σ σ! = = = e σ σ =1 σ 1 ( 1)! = e σ σ = σ! = σ. (1.8) 1.7 σ =.3 1.5 5. 1 9 8 7 6 5 4 3 1 σ =.3..1..3.4.5.6.7.8 w 1 9 8 7 6 5 4 3 1 σ = 1.5..1..3 w 1 9 8 7 6 5 4 3 1 σ = 5...1. w 1.7: