総研大恒星進化概要.dvi

Similar documents
( ) ,

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

all.dvi

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.


1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

30

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

LLG-R8.Nisus.pdf

Contents 1 Jeans (

Note.tex 2008/09/19( )

23 1 Section ( ) ( ) ( 46 ) , 238( 235,238 U) 232( 232 Th) 40( 40 K, % ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4

( )

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1)

2.1: n = N/V ( ) k F = ( 3π 2 N ) 1/3 = ( 3π 2 n ) 1/3 V (2.5) [ ] a = h2 2m k2 F h2 2ma (1 27 ) (1 8 ) erg, (2.6) /k B 1 11 / K

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

The Physics of Atmospheres CAPTER :

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

0406_total.pdf

2 1 1 α = a + bi(a, b R) α (conjugate) α = a bi α (absolute value) α = a 2 + b 2 α (norm) N(α) = a 2 + b 2 = αα = α 2 α (spure) (trace) 1 1. a R aα =

本文/目次(裏白)

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat

基礎数学I

A 99% MS-Free Presentation


(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

gr09.dvi

vol5-honma (LSR: Local Standard of Rest) 2.1 LSR R 0 LSR Θ 0 (Galactic Constant) 1985 (IAU: International Astronomical Union) R 0 =8.5

TOP URL 1

I

: , 2.0, 3.0, 2.0, (%) ( 2.

Report10.dvi

,,..,. 1

untitled

5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

untitled

meiji_resume_1.PDF

* 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) *

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

Bethe-Bloch Bethe-Bloch (stopping range) Bethe-Bloch FNAL (Fermi National Accelerator Laboratory) - (SciBooNE ) SciBooNE Bethe-Bloch FNAL - (SciBooNE

構造と連続体の力学基礎

201711grade1ouyou.pdf

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

2000年度『数学展望 I』講義録

数学の基礎訓練I

66 σ σ (8.1) σ = 0 0 σd = 0 (8.2) (8.2) (8.1) E ρ d = 0... d = 0 (8.3) d 1 NN K K 8.1 d σd σd M = σd = E 2 d (8.4) ρ 2 d = I M = EI ρ 1 ρ = M EI ρ EI

白山羊さんの宿題.PDF

ポリトロープ、対流と輻射、時間尺度

Part () () Γ Part ,

TOP URL 1

Dynkin Serre Weyl

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

Formation process of regular satellites on the circumplanetary disk Hidetaka Okada Department of Earth Sciences, Undergraduate school of Scie

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

untitled

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

TOP URL 1

(Blackbody Radiation) (Stefan-Boltzmann s Law) (Wien s Displacement Law)

H.Haken Synergetics 2nd (1978)

液晶の物理1:連続体理論(弾性,粘性)

Microsoft Word - 章末問題


(Stellar pulsation) 1 ( ) (radial pulsation) (radial oscillation) (δ Cep) 15 km/s ( ) Luminosity Teff 4 R2 ( nonradial pulsation nonradial oscillation

量子力学 問題

i 18 2H 2 + O 2 2H 2 + ( ) 3K

I II III IV V

SO(2)

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

* n x 11,, x 1n N(µ 1, σ 2 ) x 21,, x 2n N(µ 2, σ 2 ) H 0 µ 1 = µ 2 (= µ ) H 1 µ 1 µ 2 H 0, H 1 *2 σ 2 σ 2 0, σ 2 1 *1 *2 H 0 H

TOP URL 1


OHO.dvi

A

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

1 2 2 (Dielecrics) Maxwell ( ) D H

QMI_10.dvi

PDF

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m


No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

main.dvi

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq


Transcription:

The Structure and Evolution of Stars I. Basic Equations. M r r =4πr2 ρ () P r = GM rρ. r 2 (2) r: M r : P and ρ: G: M r Lagrange r = M r 4πr 2 rho ( ) P = GM r M r 4πr. 4 (2 ) s(ρ, P ) s(ρ, P ) r L r T s t = L r M r + ε N ε ν (3). ε N ε ν radiation conduction convection λ (= λ rad + λ cond + λ conv, λ rad λ cond λ conv L r = λ T r = λ T rad r λ T cond r λ T conv r. (4) L r,rad L r,cond L r,conv κ L r = 4πGcM r κ 4aT 4 /3 P log T log P. (4 )

a c λ = 4πr2 4 ρκ 3 act 3, (5) /κ =/κ rad +/κ cond ++/κ conv (6) 2. eqs. ()-(4) M r P ρ T r L r 5 4 M r =0 r = L r = 0 (7) M r =0 P = ρ = 0( radiative zero boundary condition), or (8) τ = κρdr =2/3 P = ρdr, and T = T eff ( L 4πR 2 σ )/4. (9) R R L luminosity σ (= ac/4) Stephan-Boltzmann T eff effective temperature R L =4πR 2 σt 4 eff (0) II.. P = Kρ +/N (K, N ) () eqs. () (2) ρ c P c ξ = r/r 0, ϕ = M r /M 0, ϖ = P/P c, θ = ρ/ρ c (2) P c R 0 =( ) /2 Pc 3, M 0 =( 4πG ρ c 4πG 3 ρ 4 c ) /2 dϕ dξ = ξ2 θ, dϖ dξ = ϕθ ξ 2, ϖ = θ+/n (3) 2

ξ = ξ/ +N θ = θ /N d dθ ξ 2 (ξ 2 dξ ξ )= θ N (3 ). eq. (3) eq. (3 ) Lane-Emden 2. Lane-Emden Lane-Emden polytropic index, N, 0 N 5 (θ =0) dθ /dξ =0atξ =0: θ = Lane-Emden N =0 5 ϖ = ξ 2 /6 θ = sin(ξ/ 2)/(ξ/ 2) θ =[+ξ 2 /8] 5/4 N =0 N = N =5. Lane-Emden * ξ, ϕ, N =0 N soft ρ c /ρ (= 3ξ 3 /ϕ ) N N =5 ϕ ξ * N ξ ϕ ρ c /ρ 0 2.449 4.899.0 4.442 8.886 3.290.5 5.777 0.73 5.99 3.0 3.79 6.4 54.8 5.0 25.56 Lane-Emden M R ρ c P c Pc 3 M =[ 4πG 3 ρ 4 c ] /2 ϕ, R =[ 4πG P c ] /2 ξ ρ 2, (4) c * N =5 t = log ξ z = 2ξ θ * N =5 stellar dynamics Plummer 3

M R ρ c P c P c =( ξ ) GM ρ c ϕ R, ρ c =( ξ3 ) M (4) ϕ 4πR 3 (d log P/dlog r) (d log ρ/d log r) = N + N ( ) N 3 P = k µm a ρt (5) (µ m a k atomic mass unit Boltzmann ) (4 ) T c = µm a k P c ρ c.2 0 7 K, ρ c 77 g cm M =.99 0 33 g and R =6.95 0 0 cm 4 R T c R ρ c R 3 T 3 c /ρ c =(µm a /k) 3 (P 3 c /ρ 4 c)=(µm a /k) 3 4πG 3 (M/ϕ ) 2 (6) T c ρ /3 c T c M 2/3 ρ c M 2 (6) (4) P = P g + P rad = k ρt + a µm a 3 T 4 (4 ) T c R ρ c R 3 β β = P g /P = kρt/µm a P, β = P rad /P = at 4 /3P (7) (4) β c β 4 c =( µm a k )4 a 3 4πG3 ( M ϕ ) 2. (8) 4

β c M β 4 0 4 M>0M 4 M r M luminosity L L L Edd (κ el /κ)( β) (9) κ el L Edd 4πGcM/κ el (20) Eddington β d log P/dlog ρ ( log P/ log ρ) ad = 32 24β 3β2 3(8 β) 4/3 (2) ( γ =5/3 ) N =3 N =3 β β (8) β β M 2 and hence L M 3 (κ el /κ) (22) M>0M β L L Edd M (23) * III.. Virial u γ u =/(γ ) kt =/(γ ) P/ρ (24) µm a * Lane-Emden 5

E T E G M P (γ )E T = 0 ρ dm r = =[ 4πr3 P ] R 0 3 = 3 M 0 R 0 P 4πr 2 dr ( 4πr3 3 )dp dr dr GM r dm r = r 3 E G (25) Virial E E = E T + E G = (3γ 4)E T = 3γ 4 3γ 3 E G. (26) E E T E G γ =5/3 E = E T + E G = E T = 2 E G (27) 2. 6

timescale free-fall timescale τ ff (= / 4πGρ) 6 T c ρ /3 c R T c 0 6 L L N E/ t = L + L N < 0 E/ t = L+L N > 0 L N = L * ** IV. = * ** 7

. Fermi-Dirac ΨkT n e = P e = 3 0 0 exp(ɛ/kt Ψ) + p ɛ p exp(ɛ/kt Ψ) + 8πp 2 dp, (28) h3 8πp 2 dp, (29) h3 ɛ =(m 2 ec 4 + p 2 c 2 ) /2 mc 2 Ψ > 0 n e = e Ψ 2(2πm e kt/h 2 ) 3/2 (30) ρ > µ e m a 2(2πm e kt/h 2 ) 3/2 =8.µ e T 3/2 6 (3) (µ e T 6 = T/0 6 K), Fermi p F n e = 8π 3 (m ec h )3 ( p F m e c )3 (32) P e = { π 3 ( m ec h π 3 ( m ec h )3 m e c 2 8 5 ( p F m e c )5 )3 m e c 2 2( p F m e c )4 (N.R.) (E.R.) Fermi ɛ F =(m 2 ec 4 +p 2 F c2 ) /2 mc 2 2kT 64π ρ>µ e m a 3 (m ec h )3 =7.8 0 6 µ e gcm 3 (33) { 4 π 2/3 ( h 5 3 m P e = e c )2 m e c 2 ρ ( µ e m a ) 5/3 (N.R.) π 2/3 3 ( h m e c )m (34) ec 2 ρ ( µ e m a ) 4/3 (E.R.) N =.5 N =3 - P e P i 8

E E T E G / E T I II E >0 3 τ exp = c P T/ε N c P τ ff =/ 4πGρ (a) τ exp >τ ff L N = L (b) τ exp <τ ff E = E T /E G (b) Ia 9

(a) T c ρc /3 M 2/3 T c ρ 2/3 c (8) (3) T deg T deg = 2π(8πµ em a ) 2/3 µ 2 m 2 am e G 2 ( M ) 4/3 (35) h 2 k ϕ polytropic index N =.5 M =0.023M (µ 3 µ e ) /2 T 3/4 6 (36) T 2 0 6 K µ = 0.6 µ e =.2 M 0.08M 0.08M Kelvin-Helmholtz τ KH (GM 2 /R)/L 3 0 7 (M/M ) 2 (R/R ) (L/L ) yr (37) (L M 3 4 ) Gyr f τ = MXE Hf L =6.8 0 9 ( M )( X M 0.7 )( L ) E H f ( L 6 0 8 )( )yr (38) erg g 0. X E H 00 L M 3 4 2 3 0

L Edd τ =7.2 0 6 f( L Edd )yr (39) L f 2.5M 8M 8 M 2M Lane-Emden Fermi N =.5 h 2 R =[ 4πGm e 5 ( 3 8π )2/3 µ e m a 3h 6 M =[ 32π 2 G 3 m 3 e 5/3 ] /2 5.777 ρ /6 c 5 3 ( ) 5 ] /2 0.73 ρ /2 c µ e m a (40) RM /3 = 5 ( 3 32π 2 µ e m a ) 2/3 h 2 Gµ e m a m e ξ ϕ /3 =0.040( µ e ) 5/3 R M /3 (4) (µ =2) 0.0R /00 Fermi P ρ 4/3, N =3 3 M = M crit =[ 32π ( hc ) 3 ] /2 µ 2 6.4 =.42M 2 ( 2 ) 2 (42) 4Gm a m a µ e M crit Chandrasekhar hc 3 R =[ ( ) /3 ] /2 ( ) 2/3 3.79 ρ /3 c =0.0( ) 2/3 ρ /3 c,6 R (43) 4πGm a 8πm a µ e µ e

(ρ c,6 = ρ c /0 6 gcm 3 ) ρ c M 2 R M /3 M crit 2. M ρ (3 N)/2N c homologous / N =3 Γ +/N =4/3. N < 3 Γ > 4/3 : M / 2. N =3 Γ =4/3 : M / 3. N>3 Γ < 4/3 : M ρ c γ =( log P/ log ρ ) ad =5/3 > 4/3 ( ) γ<4/3 H p + e / / 0 9 K γ<4/3 M>2M 56 Fe 3 4 He + 4n + 24.4Mev (44) 2

M < 30M < 2M M > 30M II T>0 9 2γ e + e + (45) γ<4/3 0 9 K 3. IV. 3