+,-,*,/,^ Mathematica 2Pi * + 2; (Enter) Maple + 2 (Shift+Enter) Mathematica 3 Maple abs(x) Mathematica Abs[x] : % %+ : ^ *, / +, - 23^4*2 + 4/2; (Mat

Similar documents
sin x

GraphicsWithPlotFull.nb Plot[{( 1), ( ),...}, {( ), ( ), ( )}] Plot Plot Cos x Sin x, x, 5 Π, 5 Π, AxesLabel x, y x 1 Plot AxesLabel


40 6 y mx x, y 0, 0 x 0. x,y 0,0 y x + y x 0 mx x + mx m + m m 7 sin y x, x x sin y x x. x sin y x,y 0,0 x 0. 8 x r cos θ y r sin θ x, y 0, 0, r 0. x,

III No (i) (ii) (iii) (iv) (v) (vi) x 2 3xy + 2 lim. (x,y) (1,0) x 2 + y 2 lim (x,y) (0,0) lim (x,y) (0,0) lim (x,y) (0,0) 5x 2 y x 2 + y 2. xy x2 + y

1

種々の数学ソフトウェア

OK (S) vncviewer UNIX EDS vncviewer : VNC server: eds.efc.sec.eng.shizuoka.ac.jp:51 OK 2

2 1 Mathematica Mathematica Mathematica Mathematica Windows Mac * Mathematica 9-1 Expand[(x + y)^7] (x + y) 7 x y Shift *1 Mathematica 1.12

1 8, : 8.1 1, 2 z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = n i=1 a ii x 2 i + i<j 2a ij x i x j = ( x, A x), f =

.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0,

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)

D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y

untitled

( a 3 = 3 = 3 a a > 0(a a a a < 0(a a a

Fortran90/95 [9]! (1 ) " " 5 "Hello!"! 3. (line) Fortran Fortran 1 2 * (1 ) 132 ( ) * 2 ( Fortran ) Fortran ,6 (continuation line) 1

pdf

x ( ) x dx = ax


1 1 Gnuplot gnuplot Windows gnuplot gp443win32.zip gnuplot binary, contrib, demo, docs, license 5 BUGS, Chang

/Users/yamada/Documents/webPage/public_html/kkk/ 8 プロット

2005

i PowerBookG4 Maple 9 L A T E X Maple Maple 9 Waterloo Maple Inc. Macintosh, Power Macintosh Apple Computer, Inc. UNIX AT&T X Window System Microsoft

f (x) f (x) f (x) f (x) f (x) 2 f (x) f (x) f (x) f (x) 2 n f (x) n f (n) (x) dn f f (x) dx n dn dx n D n f (x) n C n C f (x) x = a 1 f (x) x = a x >

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

2 1 Octave Octave Window M m.m Octave Window 1.2 octave:1> a = 1 a = 1 octave:2> b = 1.23 b = octave:3> c = 3; ; % octave:4> x = pi x =

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (


2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA appointment Cafe D

. p.1/14

i

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 -

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

f(x,y) (x,y) x (x,y), y (x,y) f(x,y) x y f x (x,y),f y (x,y) B p.1/14

A


combine: combine(exp1 ) collect: collect(exp1,x) convert: convert(exp1,opt ) > convert(sin(x),exp); > convert(sinh(x),exp); > convert(exp(i*x),trig);

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f

1.1 ft t 2 ft = t 2 ft+ t = t+ t d t 2 t + t 2 t 2 = lim t 0 t = lim t 0 = lim t 0 t 2 + 2t t + t 2 t 2 t + t 2 t 2t t + t 2 t 2t + t = lim t 0

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

untitled

untitled


gnuplot.dvi

ax 2 + bx + c = n 8 (n ) a n x n + a n 1 x n a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 4

-2-

( z = x 3 y + y ( z = cos(x y ( 8 ( s8.7 y = xe x ( 8 ( s83.8 ( ( + xdx ( cos 3 xdx t = sin x ( 8 ( s84 ( 8 ( s85. C : y = x + 4, l : y = x + a,

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

FX ) 2

FX自己アフリエイトマニュアル

gnuplot gnuplot 1 3 y = x 3 + 3x 2 2 y = sin x sin(x) x*x*x+3*x*x

としてもよいし,* を省略し, その代わりにスペースを空けてもよい. In[5]:= 2 3 Out[5]= 6 数値計算 厳密な代数計算 整数および有理数については, 厳密な計算がなされます. In[6]:= Out[6]= In[7]:= Out[7]= 2^

29

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

CALCULUS II (Hiroshi SUZUKI ) f(x, y) A(a, b) 1. P (x, y) A(a, b) A(a, b) f(x, y) c f(x, y) A(a, b) c f(x, y) c f(x, y) c (x a, y b)

0 (1 ) 0 (1 ) 01 Excel Excel ( ) = Excel Excel = =5-5 3 =5* 5 10 =5/ 5 5 =5^ 5 5 ( ), 0, Excel, Excel 13E E

微分積分学2

< 1 > (1) f 0 (a) =6a ; g 0 (a) =6a 2 (2) y = f(x) x = 1 f( 1) = 3 ( 1) 2 =3 ; f 0 ( 1) = 6 ( 1) = 6 ; ( 1; 3) 6 x =1 f(1) = 3 ; f 0 (1) = 6 ; (1; 3)

1 (1) ( i ) 60 (ii) 75 (iii) 315 (2) π ( i ) (ii) π (iii) 7 12 π ( (3) r, AOB = θ 0 < θ < π ) OAB A 2 OB P ( AB ) < ( AP ) (4) 0 < θ < π 2 sin θ

スタートアップガイド_応用編

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

Transcription:

Maple Mathematica Maple Mathematica ( 3, 7). Maple classical maple worksheet 3 : Maple quit; Mathematica Quit Maple : Maple Windows Maple Maple5. Linux xmaple. (Display) (Input display) (Maple Notation). Maple. Maple.. :Maple?sin Mathematica? Integrate : Maple > Enter Mathematica In[]:= Shift+Enter

+,-,*,/,^ Mathematica 2Pi * + 2; (Enter) Maple + 2 (Shift+Enter) Mathematica 3 Maple abs(x) Mathematica Abs[x] : % %+ : ^ *, / +, - 23^4*2 + 4/2; (Mathematica ; Shift+Enter) (23) 4 2 + 4 2 ( ) : := eq:= x+y; eq:= x+y Maple Mathematica eq x+y x=,y=2 eq eq(,2) subs(x=,eq); subs(x=,y=2,eq); Maple eq /. x-> eq /. {x->,y->2} Mathematica eq:= x-> x^2; eq:= (x,y) -> x+y; Maple eq[x_,y_]:= x+y Mathematica eq(,2); eq[,2] Maple Mathematica Maple f:= x-> x^2 f:= x-> x^3 Mathematica Clear[f] 2

: with(linalg); Maple << Calculus VectorAnalysis Mathematica Mathematica Calculus VectorAnalysis 3

Maple ( ) +,-,*,/,^,abs(x) evalf( ) evalf(, ) Pi I infinity binomial(n,r) ( ) f:= x -> x^2+ () f:= (x,y) -> x^2*y+ sin(x) cos(x) tan(x) arcsin(x) exp(x) 2^x log(x) log[](x) value(limit(f(x),x= )) value(limit(f(x),x=,left)) () solve({x+y=,x^2+y^2=2},{x,y}) () fsolve({x+sin(y)=,x-y=},{x,y}) ( ) diff(f(x),x) diff(f(x,y),x$,y$ ) int(f(x),x) () int(f(x),x=..) () evalf(int(f(x),x=..)) convert(f(x),parfrac,x) series(f(x),x=, ) jacobian([x^2,x*y],[x,y]) 4

Maple ( ) 2 plot(x^3+,x=-5..5) 3 plot3d(x^2-y^2,x=..5,y=..5) ( ) plot([x,x^2,x=..5]) (2 ) plot3d([x*y,x^2,x+y],x=..5,y=..5) polarplot(f(t),t=..2*pi) pointplot([[,2],[3,]]) pointplot3d([[,2,3],[2,3,4]],symbol=circle) 2 implicitplot(x^2+y^3=,x=-2..2,y=-2..2) 3 implicitplot3d(x^2+y^2+z^3=,(x,y,z )) () contourplot(x*y,x=-5..5,y=-5..5) () contourplot3d(x*y,x=-5..5,y=-5..5) Maple ( ) matrix(2,2,[,2,3,4]) evalm(a+b),evalm(a-b),evalm(a^(-3)) evalm(c * A), evalm(a &* B) transpose(a) rref(a) det(a) vector([,2,3]), ( 3 ) dotprod(v,w), crossprod(v,w) norm(v,2) eigenvects(a) jordan(a, P ); evalm(p); 5

Mathematica ( ) +,-,*,/,^,Abs[x] N[ ] N[, ] Pi I Infinity Binomial[n,r] ( ) f[x_]:= x^2+ () f[x_,y_]:= x^2*y+ Sin[x] Cos[x] Tan[x] ArcSin[x] Exp[x] 2^x Log[x] Log[,x] Limit[f[x],x->] Limit[f[x],x->,Direction->] ( -) () Solve[{x^2-2==,y^2==3},{x,y}] () (Mathematica) ( ) D[f[x],x] D[f[x,y],{x, },{y, }] Integrate[f[x],x] () Integrate[f[x],{x,,}] () NIntegrate[f[x],{x,,}] Apart[f[x]] Series[f[x],{x,, }] (Mathematica) 6

Mathematica ( ) 2 Plot[Sin[x],{x,-Pi,Pi} 3 Plot3D[x*y,{x,,},{y,,}] ( ) ParametricPlot[{x,x^2},{x,,}] (2 ) ParametricPlot3D[{x,y,x*y},{x,,5},{y,,5}] PolarPlot[+Cos[x],{x,,2Pi}] 2 ContourPlot[x^3-x*y+y^3==2,{x,-5,5},*] 3 ContourPlot3D[,{x,,},{y,,},{z,,},*] Graphics[{PointSize[.5],Point[{,2}]}] Graphics3D[{PointSize[.5],Point[{,2,3}]}] ( ) 2 * Contours->{,2,3} (2 ) 3 * Contours->{,2,3} Mathematica ( ) {{,2},{3,4}} A+B, A-B, MatrixPower[A,n] c A, A. B Transpose[A] RowReduce[A] Det[A] {,2,3}, ( 3 ) v. w, Cross[v,w] Norm[v] Eigenvalues[A], Eigenvectors[A] JordanDecomposition[A] 7

(Maple) Maple simplify() expand() evalf(cos()) evalf evalf(cos(),2) solve(x^2-2*x+2=,x) () fsolve(x^3-x-=,x) () fsolve(x^3-x-=,x=..2) ( ) {x+y=,x-y=2} { } Digits:= ; fsolve() {x=..2,y=-5..5} Maple Mathematica Mathematica 3 x+ x dx Maple 3, Mathematica 7 evalf(int(f(x),x=..)) int(int(x^2+y^2,y=..x^2),x=..); jacobian() with(linalg); jacobian() [x] with(plots); with(plots); p:= pointplot([,2],[3,-]); p2:= plot(x^3+,x=..5); display(p,p2); f:= x-> diff(x^2,x); f(); x 2 2x x = f(x) x = Maple Mathematica 8

f:= diff(x^2,x); subs(x=,f); f:x-> diff(x^2,x); subs(x=,f(x)); f(x) subs( ) (Mathematica) Mathematica Simplify[ ] Expand[ ] N[ ] N[Cos[],5] 5 Direction->- Solve[x^2-2==,x] NSolve[x^2-2==,x] Maple FindRoot[x-Sin[x]-==,{x,,2}], 2 [, 2] 2 Maple Calculus VectorAnalysis JacobianMatrix 3 D[ ] Maple ( @ shift ) Graphics Graphics Graphics ImplicitPlot Graphics ParametricPlot3D Graphics ContourPlot3D Graphics Graphics3D PolarPlot 2 (ContourPlot ) ParametricPlot3D, SphericalPlot3D 3 3 Mathematica g = Graphics[{PointSize[.5],Point[{,2}],Point[{2,3}]}] g2 = Plot[x^2,{x,,2}] Show[g,g2] (g ) Mathematica Maple f:= D[x^2,x] (Shift+Enter) f /. x-> f[x_]:= D[x^2,x] (Shift+Enter) f[x] /. x-> f(x) x = (Maple, Mathematica) 9

Maple evalm( ) A,B A+B; A+B inverse(a) A^(-) eigenvects(a) A. Maple Mathematica Mathematica //MatrixForm Inverse[A]. y = x 3 +x 2 x+ x = y = 4x 2. 5 2 2 x 5 plot({x^3+x^2-x+,4*x-2},x=-2..2,*); Plot[{x^3+x^2-x+,4*x-2},{x,-2,2},*] Maple Mathematica * Maple, Mathematica display, show Maple thickness=2,resolution=3,color=blue macro(color=rgb(,,.5)); color=color. RGB Mathematica PlotPoints->5,PlotStyle->{Thickness[.],RGBColor[,,]}

2. y = sin(x) + cos(x) + 2 cos(2.2x). 3 2 x 2 3 4 5 6 2 3 Maple Mathematica f:= sin(x)+cos(x)+2*cos(2.2*x); plot(f,x=..6); g:= diff(f,x); a:= fsolve(g=,x=..); evalf(subs(x=%,f)); ( ) a5:= fsolve(g=,x=5..6); evalf(subs(x=%,f)); 3. x(t) = sin(t)+exp( t), y(t) = cos(2t)+sin(t) (t [, 2])... f:= Sin[x]+Cos[x]+2*Cos[2.2*x] Plot[f,{x,,6}] g:= D[f,x] FindRoot[g==,{x,,}] f /. % ( ) FindRoot[g==,{x,5,6}] f /. %.4.8.6.2.5..5.2 Maple Mathematica x:= sin(t)+exp(-t); y:= cos(2*t)+sin(t); F:= diff(x,t)^2+diff(y,t)^2 evalf(int(f^(/2),t=..2)); x:= Sin[t]+Exp[-t] y:= Cos[2*t]+Sin[t] F:= D[x,t]^2+D[y,t]^2 NIntegrate[F^(/2),{t,,2}] 4. with(plots);(maple) << Graphics ContourPlot3D (Mathematica) Mathematica 7

ContourPlot3D. z = x 3 x y + y 2 y, z = x 3 3 x 2 y + y 3 + 3 x 2. 6 3 2 5 4 3 2.5.5 x.5.2.4.6.8 y.2.4.5 y.5.5 x.5. Maple Mathematica plot3d(x^3-x*y+y^2-y,x=-...5,y=...5,*); plot3d(x^3-3*x^2*y+y^3+3*x^2,x=-..,y=-..,*); * axes=frame,grid=[2,2],color=x Plot3D[x^3-x*y+y^2-y,{x,-,.5},{y,,.5},*] Plot3D[x^3-3*x^2*y+y^3+3*x^2,{x,-,},{y,,},*] * PlotPoints->5,ColorFunction->Hue Maple export eps. Mathematica Export["C:\Home\gazou.eps",%]. 5. 2 y 5 4xy(y 2 x 2 ) + 2x 5 =.. y.5.8.6.4.2.2.4.6.8 x.5 Maple, Mathematica implicitplot(y^5-4*x*y*(y^2-x^2)+2*x^5=,x=-.8..,y=-..2,*); ContourPlot[y^5-4*x*y*(y^2-x^2)+2*x^5==,{x,-.8,},{y,-,2},*] * grid=[,], PlotPoints->{2,2}. 2

6. 2 3 x 3 +y 4 z 2 =, xy + xz + yz = 3..5.5 2 2.5.5.5.5 2. Maple : p:=implicitplot3d(x^3+y^4-z^2=,x=..2,y=..2,z=..2,*): p2:=implicitplot3d(x*y+x*z+y*z=3,x=..2,y=..2,z=..2,*); display(p,p2); * color=red, color=blue. Mathematica : p=contourplot3d[x^3+y^4-z^2-,{x,,2},{y,,2},{z,,2}] p2=contourplot3d[x*y+x*z+y*z-3,{x,,2},{y,,2},{z,,2}] Show[p,p2] Contours->{.}, PlotPoints-{2,2,2}. Mathematica. Maple : with(linalg); A:= matrix(3,5,[,2,3,4,5,2,5,3,4,,,-2,4,3,7]); rref(a); 2 3 4 5 2 5 3 4 2 4 3 7 3

. with(linalg); A:= matrix(3,3,[,2,3,4,5,6,7,8,9]); B:= diag(2,5,3); evalm(a^2 &* transpose(b)); det(a); 2 3 2 4 5 6 7 8 9 A 2t B, det A. A. eigenvects(a) A.. Maple. 3. 5 3 with(linalg); A:= matrix(3,3,[,2,3,4,5,6,7,8,9]); jordan(a, P ); evalm(p); A J A = P JP P. Mathematica :. A= {{,2,3,4,5},{2,5,3,4,},{,-2,4,3,7}} RowReduce[A]//MatrixForm A= {{,2,3},{4,5,6},{7,8,9}} B= DiagonalMatrix[{2,5,3}] A^2. Transpose[B]//MatrixForm Det[A] A= {{.,2,3},{4,5,6},{7,8,9}} 4

Eigenvalues[A] Eigenvectors[A] A= {{,2,3},{4,5,6},{7,8,9}} JordanDecomposition[A]. y + y =, y() = c, y () = 2 c. Maple eq:= diff(y(x),x$2)+y(x) = ; sol:= dsolve({eq,y()=c,d(y)()=2},y(x)); with(plots); f:= unapply(rhs(sol),x,c); plot({f(x,c) $ c=..5},x=..6); plot({seq(f(x,c),c=[,3,4])},x=..6);. Mathematica eq= y [x]+y[x]== DSolve[{eq,y[]==c,y []==2},y,x] Last[Last[Last[Last[%]]]] f[x_,c_]= % Plot[Table[f[x,c],{c,,5,}],{x,,6}] Plot[Table[f[x,c],{c,{,3,4}}],{x,,6}]. 5