Euler Appendix cos, sin 2π t = 0 kx = 0, 2π x = 0 (wavelength)λ kλ = 2π, k = 2π/λ k (wavenumber) x = 0 ωt = 0, 2π t = 0 (period)t T = 2π/ω ω = 2πν (fr

Similar documents
QMI_09.dvi

QMI_10.dvi

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

chap03.dvi

phs.dvi

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

1 yousuke.itoh/lecture-notes.html [0, π) f(x) = x π 2. [0, π) f(x) = x 2π 3. [0, π) f(x) = x 2π 1.2. Euler α

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

振動と波動

QMI_10.dvi

Untitled

Xray.dvi

I

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f

数学の基礎訓練I

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

0 0. 0

Fourier series to Fourier transform Masahiro Yamamoto September 9, 2016 OB (r j)j r (r i)i Figure 1: normal coordinate, projection, inner product 3 r

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

k m m d2 x i dt 2 = f i = kx i (i = 1, 2, 3 or x, y, z) f i σ ij x i e ij = 2.1 Hooke s law and elastic constants (a) x i (2.1) k m σ A σ σ σ σ f i x

LCR e ix LC AM m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x (k > 0) k x = x(t)

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

I y = f(x) a I a x I x = a + x 1 f(x) f(a) x a = f(a + x) f(a) x (11.1) x a x 0 f(x) f(a) f(a + x) f(a) lim = lim x a x a x 0 x (11.2) f(x) x

TOP URL 1


7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

1 8, : 8.1 1, 2 z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = n i=1 a ii x 2 i + i<j 2a ij x i x j = ( x, A x), f =

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

chap1.dvi

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

,., 5., ,. 2.2,., x z. y,.,,,. du dt + α p x = 0 dw dt + α p z + g = 0 α dp dt + pγ dα dt = 0 α V dα dt = 0 (2.2.1), γ = c p /c

pdf

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

2000年度『数学展望 I』講義録

i

ssp2_fixed.dvi

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i

(interferometer) 1 N *3 2 ω λ k = ω/c = 2π/λ ( ) r E = A 1 e iφ1(r) e iωt + A 2 e iφ2(r) e iωt (1) φ 1 (r), φ 2 (r) r λ 2π 2 I = E 2 = A A 2 2 +


QMII_10.dvi

Gmech08.dvi

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

Excel ではじめる数値解析 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

08-Note2-web

x E E E e i ω = t + ikx 0 k λ λ 2π k 2π/λ k ω/v v n v c/n k = nω c c ω/2π λ k 2πn/λ 2π/(λ/n) κ n n κ N n iκ k = Nω c iωt + inωx c iωt + i( n+ iκ ) ωx

( ) s n (n = 0, 1,...) n n = δ nn n n = I n=0 ψ = n C n n (1) C n = n ψ α = e 1 2 α 2 n=0 α, β α n n! n (2) β α = e 1 2 α 2 1

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y


ẍ = kx, (k > ) (.) x x(t) = A cos(ωt + α) (.). d/ = D. d dt x + k ( x = D + k ) ( ) ( ) k k x = D + i D i x =... ( ) k D + i x = or ( ) k D i x =.. k.


main.dvi

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2

Microsoft Word - 信号処理3.doc


DVIOUT-fujin


No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t


4/15 No.

Note.tex 2008/09/19( )

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

IA

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1)

1 1 u m (t) u m () exp [ (cπm + (πm κ)t (5). u m (), U(x, ) f(x) m,, (4) U(x, t) Re u k () u m () [ u k () exp(πkx), u k () exp(πkx). f(x) exp[ πmxdx


kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2

2

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

Korteweg-de Vries

all.dvi

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

TOP URL 1

³ÎΨÏÀ

02-量子力学の復習

The Physics of Atmospheres CAPTER :

3. :, c, ν. 4. Burgers : t + c x = ν 2 u x 2, (3), ν. 5. : t + u x = ν 2 u x 2, (4), c. 2 u t 2 = c2 2 u x 2, (5) (1) (4), (1 Navier Stokes,., ν. t +

Transcription:

This manuscript is modified on March 26, 2012 3 : 53 pm [1] 1 ( ) Figure 1: (longitudinal wave) (transverse wave). P 7km S 4km P S P S x t x u(x, t) t = t 0 = 0 f(x) f(x) = u(x, 0) v +x (Fig.2) ( ) δt t u(x, δt) = f(x vδt) (1) u(x, δt) = f(x + vδt) (2) u(x, t) = f(x vt), propagate + x direction (3) x v v u(x, t) = f(x + vt), propagate x direction (4) (Fig.3) Fig.2,3 f Fig.4 Ae i(kx ωt) = A cos(kx ωt) + ia sin(kx ωt) (5) 1

Euler Appendix cos, sin 2π t = 0 kx = 0, 2π x = 0 (wavelength)λ kλ = 2π, k = 2π/λ k (wavenumber) x = 0 ωt = 0, 2π t = 0 (period)t T = 2π/ω ω = 2πν (frequency)ν ν = 1/T ω (angular frequency) exp(iθ) θ kx ωt phase cos kx ωt = 0 x = (ω/k)t +x phase velocity v = ω/k x Ae i(kx+ωt) (Fig. 5, 6, 7) t 0 + δt vδt t = t 0 vδt t 0 δt x Figure 2: +x v t 0 + δt vδt t = t 0 vδt t 0 δt x Figure 3: x v 2 u x t X f f(x) X x vt, f(x vt) = f(x) (6) x = X df x dx = df dx (7) x 2 = df x dx = X df x X dx = d2 f dx 2 (8) = X df df = v t t dx dx (9) t 2 = v df X df = v t dx t X dx = v2 d2 f dx 2 (10) t 2 = v 2 2 u x 2 (11) 2

!" )./01$/2/-%-&-&34561*/3 ))7)') """"" ))7)') """" ))7)') """ "!# "!" $"!# &'#()*' ()+*,' -&- """" $%" $ " " " %" x Figure 4: f(x) = A exp( x 2 /2/ 2 ) exp(ikx) Gaussian wavepacket f(x) = A 2π dk exp[ 2 2 (k k ) 2 + ik x] [ ] Ref(x) = A exp( x 2 /2/ 2 ) cos(kx) = A + 2π dk exp 2 2 (k k ) 2 cos(k x) Ref(x) = A [ ] 2π k (δk ) exp 2 2 k 2 cos[(k k )x], k = k k = ndk, (n = N, N + 1,..., 2, 1, 0, 1, 2,..., N 1, N) cos[(k k )x] 2π exp [ 2 2 k 2 ] 2π π π kx 2π Figure 5: cos(kx) δ > 0 cos(kx δ), cos(kx+δ) kλ = 2π +x cos(kx δ), x cos(kx + δ) 3

Figure 6: 波の位相 ei(kx+ωt) Figure 7: +x 方向への進行波の頂点に乗ってサーフィンする 頂点は 波の位相がゼロである この条件から位相速度 v = ω/k が得られる 波の最高到達地点の間隔は 波長 λ である cos(ωt) ωt = 0, ±2π,... T = 2π/ω T = 2π/ω = 1/ν v = ω/k = 2πν/(2π/λ) = λν c = ω/k = λν Figure 8: ある場所における波の振動 周期 振動数 角振動数 4

f(x + vt) f 1 (x vt) + f 2 (x + vt) ( f(x + vt) f 1 (x vt) + f 2 (x + vt) ) (11) (wave equation) 2 (11) f(x vt), f(x + vt), f 1 (x vt) + f 2 (x + vt) / t 2 / x 2 u X, Y X x vt, Y x + vt (12) x = X + Y, t = X + Y 2 2v (13) = X t t X + Y = v t Y X + v Y (14) = v t t t X + v t Y = v( X t X + Y t Y ) X + v( X t X + Y t Y ) Y (15) = v 2 2 u X 2 2v2 X Y + v2 2 u Y 2 (16) x = X x X + Y x Y = X + Y (17) x x = x X + x Y = ( X x X + Y x Y ) X + ( X x X + Y x Y ) Y (18) = 2 u X 2 + 2 2 u X Y + 2 u Y 2 (19) X Y = 0 (20) u = f 1 (X) + f 2 (Y ) u(x, t) = f 1 (x vt) + f 2 (x + vt) Y X = f 1(X) (21) f 1(X) Y X X u = dxf 1(X) + f 2 (Y ) = f 1 (X) + f 2 (Y ) (22) f 2 (Y ) X Y u(x, t) u(x, t) = f 1 (x vt) + f 2 (x + vt) u 3 3.1 (plane wave) 2π/λ k cos(kx ωt) ±x ±k r k r = 0 (23) k x x + k y y + k z z = 0 (24) u(r, t) = A exp[i(k r ωt)] (25) 5

Figure 9: X u = f(x) X = k x x + k y y + k z z ωt (26) = X f f = ω t t X X (27) = ω X f t t t X X = ω2 2 f X 2 (28) x = X f x X = k f x X (29) x x = k X f x x X X = 2 f k2 x X 2 (30) y 2 = ky 2 2 f X 2, z 2 = 2 k2 z X 2 (31) 2 u = k 2 2 f X 2, 2 = ( 2 / x 2 ) + ( 2 / y 2 ) + ( 2 / z 2 ) (32) kx 2 + ky 2 + kz 2 = k 2 (33) 2 f X 2 = 1 ω 2 t 2 = 1 k 2 2 u (34) ( ω ) 2 t 2 = 2 = v 2 2 u (35) k 3 v = ω/k 3.2 3 X Laplacian 2 qu = 2 r u θ φ ru(r, t) = U(r, t) 2 qu = 2 r 1 2 U r t 2 = v 2 ( 2 r r + 2 u r 2 + 1 r 2 θ 2 + cos θ r 2 sin θ θ + 1 r 2 sin 2 θ φ 2 (36) r + 2 u r r 2 (37) U r + 2 U r 2 r ) = 1 2 U v2 r r 2, 2 U t 2 = v2 2 U r 2 (38) 6

U(r, t) = f 1 (r vt) + f 2 (r + vt) u(r, t) = U(r, t) r = f 1(r vt) + f 2 (r + vt) r (39) (spherical wave) OUT IN Figure 10: IN f 2 (r + vt) OUT f 1 (r vt) 4 Appendix e iθ = exp(iθ) = cos θ + i sin θ (40) Taylor If the function f(x) can be approximated by the polynominals around x = a f(x) a 0 + a 1 (x a) + a 2 (x a) 2 + a 3 (x a) 3 + a 4 (x a) 4 +... + a n (x a) n (41) If x a << 1, the above equations can be converged. We can get the 1st to n-th derivative such as Then we have f (x) = a 1 + 2a 2 (x a) + 3a 3 (x a) 2 + 4a 4 (x a) 3 +... + na n (x a) n 1 (42) f (x) = 2a 2 + 3 2a 3 (x a) + 4 3a 4 (x a) 2 +... + n(n 1)a n (x a) n 2 (43) f (x) = 3 2a 3 + 4 3 2a 4 (x a) +... + n(n 1)(n 1)a n (x a) n 3 (44) f (x) = 4 3 2a 4 +... + n(n 1)(n 2)(n 3)a n (x a) n 4 (45) f (n) (x) = n!a n a 1 = f (a), a 2 = 1 2! f (a), a 3 = 1 3! f (a), a 4 = 1 4! f (a), a n = 1 n! f (n) (a) (47) f(x) f(a) + f (a)(x a) + 1 2! f (a)(x a) 2 + 1 3! f (a)(x a) 3 +... + 1 n! f (n) (a)(x a) n (48) This is the Taylor expansion around x = a. (46) 7

e x = 1 + x + 1 2! x2 + 1 3! x3... + 1 n! xn +... (49) e ix = 1 + ix 1 2! x2 1 3! ix3 + 1 4! x4 + 1 5! ix5... (50) cos(x) = 1 1 2! x2 + 1 4! x4..., sin(x) = x 1 3! x3 + 1 5! x5..., then we have e ix = cos x + i sin x (51) e ix x << 1 x = x 0 x 0 = x 1 + dx, dx << 1 e ix 0 = e i(x 1+dx) = e ix 1 e idx = e ix 1 [1 + idx 1 2! (dx)2...] = e ix 1 [cos(dx) + i sin(dx)] x 1 = x 2 + dx, x 2 = x 3 + dx,..., x n 1 = x n + dx, 0 = x n = x 0 ndx e ix 1 = e ix 2 [cos(dx) + i sin(dx)], e ix 0 = e ix 2 [cos(dx) + i sin(dx)] 2... e ixn 1 = e ixn [cos(dx) + i sin(dx)], e ix0 = e ixn [cos(dx) + i sin(dx)] n = [cos(dx) + i sin(dx)] n [cos(dx) + i sin(dx)] 2 = cos 2 (dx) sin 2 (dx) + 2i cos(dx) sin(dx) = cos(2dx) + i sin(2dx) [cos(dx) + i sin(dx)] 3 = [cos(2dx) + i sin(2dx)][cos(dx) + i sin(dx)] = cos(2dx) cos(dx) sin(2dx) sin(dx) + i[sin(2dx) cos(dx) + sin(dx) cos(2dx)] = cos(3dx) + i sin(3dx) (53)... [cos(dx) + i sin(dx)] n = cos(ndx) + i sin(ndx) = cos(x 0 ) + i sin(x 0 ) e ix0 = cos(x 0 ) + i sin(x 0 ) (54) x e ix = cos x + i sin x i = -1 虚数軸 r θ z = r e iθ 複素平面 実数軸 (52) : 長さ r で実軸となす角 θ z = r e iθ = r (cosθ + i sinθ) z = Re(z) + i Im(z), Re(z) = r cosθ, Im(z) = r sinθ Figure 11: z z = re iθ ( r θ ), Rez = r cos θ Imz = r sin θ 8

e i(kx ωt) t = 0 x = x x = 0 t = + t x = + x 2π π π kx 2π Figure 12: +x e i(kx ωt). x = 0( ) t = 0, e 0 = 1 t = + t e iω t = cos(ω t) i sin(ω t) 1 ω +x e i(kx+ωt) t = + t t = 0 x = x x = 0 x = + x 2π π π kx 2π Figure 13: x e i(kx+ωt) x = 0( ) t = 0, e 0 = 1 t = + t e iω t = cos(ω t) + i sin(ω t) 1 ω x 9

References [1], ( (8)) 1986, 10