133 1.,,, [1] [2],,,,, $[3],[4]$,,,,,,,,, [5] [6],,,,,, [7], interface,,,, Navier-Stokes, $Petr\dot{o}$v-Galerkin [8], $(,)$ $()$,,

Similar documents
工学的な設計のための流れと熱の数値シミュレーション

空力騒音シミュレータの開発

A Higher Weissenberg Number Analysis of Die-swell Flow of Viscoelastic Fluids Using a Decoupled Finite Element Method Iwata, Shuichi * 1/Aragaki, Tsut

200708_LesHouches_02.ppt

Title 混合体モデルに基づく圧縮性流体と移動する固体の熱連成計算手法 Author(s) 鳥生, 大祐 ; 牛島, 省 Citation 土木学会論文集 A2( 応用力学 ) = Journal of Japan Civil Engineers, Ser. A2 (2017), 73 Issue

Vol.1( ) No JASCOME Trefftz ( ) SIMULATION OF SLOSHING PHENOMENON BY INDIRECT TREFFTZ METHOD (EXTENSION OF SIMULATION SCHEME) 1), 2),

IHIMU Energy-Saving Principle of the IHIMU Semicircular Duct and Its Application to the Flow Field Around Full Scale Ships IHI GHG IHIMU CFD PIV IHI M

: u i = (2) x i Smagorinsky τ ij τ [3] ij u i u j u i u j = 2ν SGS S ij, (3) ν SGS = (C s ) 2 S (4) x i a u i ρ p P T u ν τ ij S c ν SGS S csgs

Developement of Plastic Collocation Method Extension of Plastic Node Method by Yukio Ueda, Member Masahiko Fujikubo, Member Masahiro Miura, Member Sum

(Hiroshi Okamoto) (Jiro Mizushima) (Hiroshi Yamaguchi) 1,.,,,,.,,.,.,,,.. $-$,,. -i.,,..,, Fearn, Mullin&Cliffe (1990),,.,,.,, $E

Title 改良型 S 字型風車についての数値シミュレーション ( 複雑流体の数理とシミュレーション ) Author(s) 桑名, 杏奈 ; 佐藤, 祐子 ; 河村, 哲也 Citation 数理解析研究所講究録 (2007), 1539: Issue Date URL

128 Howarth (3) (4) 2 ( ) 3 Goldstein (5) 2 $(\theta=79\infty^{\mathrm{o}})$ : $cp_{n}=0$ : $\Omega_{m}^{2}=1$ $(_{\theta=80}62^{\mathrm{o}})$

JFE.dvi

NUMERICAL CALCULATION OF TURBULENT OPEN-CHANNEL FLOWS BY USING A MODIFIED /g-e TURBULENCE MODEL By Iehisa NEZU and Hiroji NAKAGA WA Numerical calculat

$arrow$ $\yen$ T (Yasutala Nagano) $arrow$ $\yen$ ?,,?,., (1),, (, ).,, $\langle$2),, (3),.., (4),,,., CFD ( ),,., CFD,.,,,

Optical Lenses CCD Camera Laser Sheet Wind Turbine with med Diffuser Pitot Tube PC Fig.1 Experimental facility. Transparent Diffuser Double Pulsed Nd:

Fig. 1 Experimental apparatus.

Web Two-phase Flow Analyses Using Interface Volume Tracking Tomoaki Kunugi Kyoto University 1) 2) 3)

A Precise Calculation Method of the Gradient Operator in Numerical Computation with the MPS Tsunakiyo IRIBE and Eizo NAKAZA A highly precise numerical

多孔質弾性体と流体の連成解析 (非線形現象の数理解析と実験解析)

Fig. Division of unbounded domain into closed interior domain and its eterior domain. Zienkiewicz [5, 6] Burnett [7, 8] [3] The conjugated Ast

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2

空間多次元 Navier-Stokes 方程式に対する無反射境界条件


第5章 偏微分方程式の境界値問題

60 1: (a) Navier-Stokes (21) kl) Fourier 2 $\tilde{u}(k_{1})$ $\tilde{u}(k_{4})$ $\tilde{u}(-k_{1}-k_{4})$ 2 (b) (a) 2 $C_{ijk}$ 2 $\tilde{u}(k_{1})$

Flow Around a Circular Cylinder with Tangential Blowing near a Plane Boundary (2nd Report, A Study on Unsteady Characteristics) Shimpei OKAYASU, Kotar

知識ベースCFD

チャネル乱流における流体線の伸長

75 unit: mm Fig. Structure of model three-phase stacked transformer cores (a) Alternate-lap joint (b) Step-lap joint 3 4)

T07M cm 3 cm/sec FreeFEM++ FreeFEM++

1 1 Emmons (1) 2 (2) 102

[7,8] ([2]) [cm/s] 1 1 Ω i (i = 1, 2, 3, 4, 5) 1: Geological features and permeability coefficient ([2]) (cm/s) Ω Ω 3 1

,,, 2 ( ), $[2, 4]$, $[21, 25]$, $V$,, 31, 2, $V$, $V$ $V$, 2, (b) $-$,,, (1) : (2) : (3) : $r$ $R$ $r/r$, (4) : 3

IPSJ SIG Technical Report Vol.2015-HPC-150 No /8/6 I/O Jianwei Liao 1 Gerofi Balazs 1 1 Guo-Yuan Lien Prototyping F

I (linear transformation) (matrix) (vector) (column

Study of the "Vortex of Naruto" through multilevel remote sensing. Abstract Hydrodynamic characteristics of the "Vortex of Naruto" were investigated b

IPSJ SIG Technical Report Vol.2014-CG-155 No /6/28 1,a) 1,2,3 1 3,4 CG An Interpolation Method of Different Flow Fields using Polar Inter

7 OpenFOAM 6) OpenFOAM (Fujitsu PRIMERGY BX9, TFLOPS) Fluent 8) ( ) 9, 1) 11 13) OpenFOAM - realizable k-ε 1) Launder-Gibson 15) OpenFOAM 1.6 CFD ( )

Rate of Oxidation of Liquid Iron by Pure Oxygen Shiro BAN-YA and Jae-Dong SHIM Synopsis: The rate of oxidation of liquid iron by oxygen gas has been s

第62巻 第1号 平成24年4月/石こうを用いた木材ペレット

MUFFIN3

Keywords: corotational method, Rigid-Bodies-Spring model, accuracy, geometrical nonlinearity

音響問題における差分法を用いたインパルス応答解析予測手法の検討 (非線形波動現象の数理と応用)

$\mathrm{s}$ DE ( Kenta Kobayashi ), (Hisashi Okamoto) (Research Institute for Mathematical Sciences, Kyoto Univ.) (Jinghui Zhu)

圧縮性LESを用いたエアリード楽器の発音機構の数値解析 (数値解析と数値計算アルゴリズムの最近の展開)

20 $P_{S}=v_{0}\tau_{0}/r_{0}$ (3) $v_{0}$ $r_{0}$ $l(r)$ $l(r)=p_{s}r$ $[3 $ $1+P_{s}$ $P_{s}\ll 1$ $P_{s}\gg 1$ ( ) $P_{s}$ ( ) 2 (2) (2) $t=0$ $P(t

Natural Convection Heat Transfer in a Horizontal Porous Enclosure with High Porosity Yasuaki SHIINA*4, Kota ISHIKAWA and Makoto HISHIDA Nuclear Applie

D v D F v/d F v D F η v D (3.2) (a) F=0 (b) v=const. D F v Newtonian fluid σ ė σ = ηė (2.2) ė kl σ ij = D ijkl ė kl D ijkl (2.14) ė ij (3.3) µ η visco

Stress Singularity Analysis at an Interfacial Corner Between Anisotropic Bimaterials Under Thermal Stress Yoshiaki NOMURA, Toru IKEDA*4 and Noriyuki M

特集_03-07.Q3C

5D1 SY0004/14/ SICE 1, 2 Dynamically Consistent Motion Design of Humanoid Robots even at the Limit of Kinematics Kenya TANAKA 1 and Tomo

2 ( ) i

(11-5) Abstract : An ultrasonic air pump utilizing acoustic streaming is discussed and its efficient simulation method using finite element analysis (

特-3.indd

untitled

数値計算:有限要素法

J. Jpn. Inst. Light Met. 65(6): (2015)

5 5 5 Barnes et al

A Navigation Algorithm for Avoidance of Moving and Stationary Obstacles for Mobile Robot Masaaki TOMITA*3 and Motoji YAMAMOTO Department of Production

Fig. 3 Coordinate system and notation Fig. 1 The hydrodynamic force and wave measured system Fig. 2 Apparatus of model testing

Trapezoidal Rule θ = 1/ x n x n 1 t = 1 [f(t n 1, x n 1 ) + f(t n, x n )] (6) 1. dx dt = f(t, x), x(t 0) = x 0 (7) t [t 0, t 1 ] f t [t 0, t 1 ], x x

Computer Simulation in Thermoplastic Injection Molding Takaaki Matsuoka Toyota Central Research and Development Laboratories, Inc. 41-1, Yokomichi, Na


JAXA-SP indd

EQUIVALENT TRANSFORMATION TECHNIQUE FOR ISLANDING DETECTION METHODS OF SYNCHRONOUS GENERATOR -REACTIVE POWER PERTURBATION METHODS USING AVR OR SVC- Ju

Study on Throw Accuracy for Baseball Pitching Machine with Roller (Study of Seam of Ball and Roller) Shinobu SAKAI*5, Juhachi ODA, Kengo KAWATA and Yu

IPSJ SIG Technical Report Vol.2012-CG-148 No /8/29 3DCG 1,a) On rigid body animation taking into account the 3D computer graphics came

$\hat{\grave{\grave{\lambda}}}$ $\grave{\neg}\backslash \backslash ^{}4$ $\approx \mathrm{t}\triangleleft\wedge$ $10^{4}$ $10^{\backslash }$ $4^{\math

.N...[..7...doc

CD口頭目次.indd


MD $\text{ }$ (Satoshi Yukawa)* (Nobuyasu Ito) Department of Applied Physics, School of Engineering, The University of Tokyo Lennar

1-22_tsubokura.indd

Title 鉛直配置された水平 2 円柱周りの自然対流に対する圧縮性流体と固体の熱連成計算手法の適用性 Author(s) 鳥生, 大祐 ; 牛島, 省 Citation 土木学会論文集 A2( 応用力学 ) = Journal of Japan Civil Engineers, Ser. A2 (

2. Eades 1) Kamada-Kawai 7) Fruchterman 2) 6) ACE 8) HDE 9) Kruskal MDS 13) 11) Kruskal AGI Active Graph Interface 3) Kruskal 5) Kruskal 4) 3. Kruskal

2 q effective mean dynamic pressure [Pa] q cr critical value of dynamic pressure [Pa] q CW heat flux for cold wall [J/m 2 ] r th throat radius [m] x a

206“ƒŁ\”ƒ-fl_“H„¤‰ZŁñ


alternating current component and two transient components. Both transient components are direct currents at starting of the motor and are sinusoidal


23 Fig. 2: hwmodulev2 3. Reconfigurable HPC 3.1 hw/sw hw/sw hw/sw FPGA PC FPGA PC FPGA HPC FPGA FPGA hw/sw hw/sw hw- Module FPGA hwmodule hw/sw FPGA h

Study on Application of the cos a Method to Neutron Stress Measurement Toshihiko SASAKI*3 and Yukio HIROSE Department of Materials Science and Enginee

: 1g99p038-8

IV (2)

H10Masuki

A Feasibility Study of Direct-Mapping-Type Parallel Processing Method to Solve Linear Equations in Load Flow Calculations Hiroaki Inayoshi, Non-member

44 $d^{k}$ $\alpha^{k}$ $k,$ $k+1$ k $k+1$ dk $d^{k}=- \frac{1}{h^{k}}\nabla f(x)k$ (2) $H^{k}$ Hesse k $\nabla^{2}f(x^{k})$ $ff^{k+1}=h^{k}+\triangle

Input image Initialize variables Loop for period of oscillation Update height map Make shade image Change property of image Output image Change time L

untitled

藤村氏(論文1).indd

IDRstab(s, L) GBiCGSTAB(s, L) 2. AC-GBiCGSTAB(s, L) Ax = b (1) A R n n x R n b R n 2.1 IDR s L r k+1 r k+1 = b Ax k+1 IDR(s) r k+1 = (I ω k A)(r k dr

季報2010C_P _4-3.indd

Fig. 1. Horizontal displacement of the second and third order triangulation points accompanied with the Tottori Earthquake of (after SATO, 1973)

Fig. 1 Hydrostatic Thrust Bearing Fig. 2 Point loading of elastic half-space

& Vol.5 No (Oct. 2015) TV 1,2,a) , Augmented TV TV AR Augmented Reality 3DCG TV Estimation of TV Screen Position and Ro

非線形長波モデルと流体粒子法による津波シミュレータの開発 I_ m ρ v p h g a b a 2h b r ab a b Fang W r ab h 5 Wendland 1995 q= r ab /h a d W r ab h

<4D F736F F D208F4390B38DC58F49938A8D6595A CA90858D48985F95B F8F43959C82B382EA82BD B5F2E646F6378>

Quantitative Relationship between SAR and Temperature Rise inside Eyeball in a Realistic Human Head Model for 1.5 GHz-Microwave Exposure Kiyofumi Taka

1 Fig. 1 Extraction of motion,.,,, 4,,, 3., 1, 2. 2.,. CHLAC,. 2.1,. (256 ).,., CHLAC. CHLAC, HLAC. 2.3 (HLAC ) r,.,. HLAC. N. 2 HLAC Fig. 2

Transcription:

836 1993 132-146 132 Navier-Stokes Numerical Simulations for the Navier-Stokes Equations in Incompressible Viscous Fluid Flows (Nobuyoshi Tosaka) (Kazuhiko Kakuda) SUMMARY A coupling approach of the boundary element method and the finite element method for solving the unsteady incompressible Navier-Stokes equations is presented. A flow field involving an obstacle is divided into two subdomains. The subdomain involving an obstacle is assumed to be an incompressible viscous flow governed by the unsteady Navier-Stokes equations, and a Petrov-Galerkin finite element method (PGFEM) using exponential functions is applied to solve the equations. The other is assumed to be a potential flow governed by the Laplace equation, and the boundary element method is applied to the flow field. Numerical results demonstrate the applicability and effectiveness of the coupling approach and PGFEM using exponential functions developed in our work.

133 1.,,, [1] [2],,,,, $[3],[4]$,,,,,,,,, [5] [6],,,,,, [7], interface,,,, Navier-Stokes, $Petr\dot{o}$v-Galerkin [8], $(,)$ $()$,,

134 2. $\Omega$ $\Omega_{1}$ $\Omega_{2}$ 2 (Fig. 1 ), $\Omega_{B}$ interface, $\Omega_{1}$ $\Omega_{2}$, $\Omega_{1}$ 2.1 $u_{i}$, $p$ Navier-Stokes $\dot{u}_{i}+u_{j}u_{i,j}=-p_{i}+\frac{1}{re}u_{i,jj}$ in $\Omega$ (1) $u_{i,i}=0$ in $\Omega$ (2), $Re$, (a) 1 fractional step $\frac{\overline{u}_{i}-u_{\dot{l}}^{n}}{\triangle t}+u_{j}^{n}u_{i}^{n_{j}}=\frac{1}{re}u^{n_{{}^{\dot{t}}\dot{\theta}j}}$ (3) (b) $2$ $u_{i}^{n+1}=\overline{u}_{i}-\triangle tp_{i}^{n+1}$, $u_{i,i}^{n+1}=0$ (4) $\triangle t$,, $n$ (4) 1, $p^{n+1}=- \frac{1}{\triangle t}\tilde{\phi}$ (5) $\tilde{\phi}$ $u_{i}^{n}$. $1=\overline{u}_{i}+\tilde{\phi}_{i}$ (6) $\tilde{\phi}$,, Poisson $\tilde{\phi}_{ii}=-\overline{u}_{i,i}$ (7)

$\overline{re}^{\ovalbox{\tt\small REJECT}}$ 135 $\Omega_{2}$ 2.2 Laplace $\phi$,, $\phi_{ii}=0$ (8) Fig.1 Problem statement 3. / Petrov-Galerkin [8] $\Omega_{1}$ $\Omega_{2}$, $\Omega_{1}$ 3.1 (3) $\int_{\omega_{i}}\{\frac{\overline{u}_{i}-u_{i}^{n}}{\triangle t}+u_{j}^{n}u_{\dot{\iota},j}^{n}\}m_{\alpha}d\omega+\int_{\omega_{i}}\frac{1}{re}u_{\dot{\iota},j}^{n}m_{\alpha,j}d\omega-\int_{\gamma;}\tau_{i^{n}}m_{\alpha}d\gamma=0$ (9) $\Omega_{\dot{l}}$, $\Omega_{1}$, $\tau_{i^{n}}\equiv u_{i}^{n_{j}}n_{j}/re$ $n_{j}$, (9) $M$ [8] $M_{\alpha}(x_{1}, x_{2})= \sum_{\gamma}n_{\alpha}(x_{1}, x_{2})e^{-\{a_{1}(n_{\gamma}x_{1}^{\gamma}-x_{1}^{\alpha})+a_{2}(n_{\gamma}x_{2}^{\gamma}-x_{2}^{\alpha})\}}$ $a_{1}=v_{1}^{n}\overline{re}$, $a_{2}=v_{2}^{n}\overline{re}^{*}$ (10) $N_{\alpha}$,, $v_{i}^{n}(i=1,2)$ $\Omega_{i}$, $\overline{re},$ $\Omega_{i}$ (9) $M_{a\cdot\beta} \frac{\{\overline{u}_{i}\}_{\beta}-\{u_{i}^{n}\}_{\beta}}{\triangle t}+k_{\alpha\beta}(u_{j}^{n})\{u_{\dot{\iota}}^{n}\}_{\beta}=f_{\alpha\beta}\{\tau_{i^{n}}\}_{\beta}$ (11)

$\tilde{\phi}$ $\overline{f}$ $\overline{u}$ $\tilde{\phi}$ 136, [8] $\Omega_{1}$, (11) $\overline{u}=u^{n}+\triangle tc^{-1}f^{n}$ (12), $C$ $F^{n}$, $n$ $U^{n}$, (7) Galerkin $\int_{\omega_{i}}\tilde{\phi}_{i}n_{\alpha,i}d\omega-\int_{\omega_{i}}\overline{u}_{i,i}n_{\alpha}d\omega=\int_{\gamma_{i}}\tilde{\phi}_{n}n_{\alpha}d\gamma$ (13), $\Omega_{i}$ $H_{\alpha\beta}\tilde{\phi}_{\beta}-G_{\alpha\beta}\{\overline{u}_{i}\}_{\beta}=f_{\alpha}$ (14), [8], (14) $B\tilde{\phi}=\overline{F}$ (15), $B$, $\Omega_{2}$ 3.2 (8), Laplace [4] $c \phi(\xi)=\int_{\gamma}\phi_{n}(x)\varphi^{*}(x, \xi)d\gamma(x)-\int_{\gamma}\phi(x)\varphi_{n}^{*}(x, \xi)d\gamma(x)$ (16) $c$ $\varphi^{*}(x, \xi)$,, Laplace, 2 $\varphi^{*}(x, \xi)=\frac{1}{2\pi}\ln\frac{1}{r}$ (17), (16) $H_{ij}\phi_{j}=G_{\dot{\iota}j}\{\phi_{n}\}_{j}$ $(i,j=1,2, \cdots, N)$ (18), $N$, $H_{ij}$ $G_{\dot{l}}\dot{J}$

$\overline{u}$ $\tilde{\phi}$ 137 3.3, Step 1: $n$ $U^{n}$, (12) ) $s$ Step 2: $\overline{u}$ (15) Step 3: Step 4: Step 5: $p^{n+1}$ (5) (6) $u_{i}^{n+1}$ 3 interface, $\phi$ (18), $\phi$, 1 4.,,,,, SCG (scaled conjugate, (15) gradient) 4.1,, Petrov-Galerkin Fig.2, $a$ $h$,, Fig.3(a), Fig. $3(b)$ interface Fig.2 Flow past a step

138 (a) Boundary conditions at first time step (b) Boundary conditions after second time step Fig.3 Boundary conditions a, $Re=200,$ $\triangle t=0.1$, $h$, $h/a=3,4,5$ [8], $t=10$ Fig.4(a),(b),(c) (d) /\alpha, $=3$, interface wake, $h/a=4$ wake,,,, $Re=10^{3},$ $\triangle t=0.1$ Fig.5 Fig.5(a),(b) (c) $t=50$ $h/a=3,4,5$ Fig.5 (d) /\alpha $=4$

139 (a) Numerical solutions for $h/a=3$ (b) Numerical solutions for $h/a=4$ (c) Numerical solutions for $h/a=5$ (d) FEM solutions Fig.4 Velocity vector and pressure fields at, $t=10(re=200,\triangle t=0.1)$

140 (a) Numerical solutions for $h/a=3$ (b) Numerical solutions for $h/a=4$ (c) Numerical solutions for $h/a=5$ (d) FEM solutions Fig.5 Velocity vector and pressure fields at $t=50(re=10^{3},\triangle t=0.1)$

$r$ $l$able 141, 3 CPU $Re=200$, Table 1 case 1: case 2: case 3: 9, cases 2, 3, CPU 1 CPU $t$ ime on a Sparc Stat ion 2 (s) 4.2 Petrov-Galerkin, 2 Fig 6 2601, 2500 Fig.7, $Re=10^{4}$ $t=150$ $\triangle t=0.005$, Fig 8, $u_{1}$ $u_{2}$ $[9]-[11]$, Ghia $[10]_{\text{ }}$ Schreiber [11]

142 (a) Geometry and boundary conditions (b) Finite element mesh Fig.6 Flow in a square cavity $0$ o.o (a) Velocity vector field (b) Pressure field Fig.7 Velocity vector and pressure fields at $t=150(re=10^{4},\triangle t=0.005)$

143 $x_{1}$ Fig.8 Velocity profiles $through^{u_{1}}the$ centre of the cavity $(Re=10^{4})$ : present $(t=150)$ ; $0$ Ghia et al. (257 by 257, multi grid FDM); A Schreiber and Keller (180 by 180, FDM); $D$ Nallasamy and Prasad (50 by 50, upwind FDM) 4.3 Petrov-Galerkin, 2, 8840, 8600 Fig.9 Fig. 10, $Re=10^{5},5\cross 10^{5},10^{6}$ $t=50$ $\triangle t=0.001$, [12] Fig. 11 [13] Fig.9 Flow past a circular cylinder

$\underline{-------\approx---\sim}$ $\sim\backslash$ $\simeq\approx\approx\sim$ 144 1$\backslash \backslash$ $O$ $($ \sim - (b) $Re=5\cross 10^{5}$ (c) $Re=10^{6}$ Fig.10 Velocity vector and pressure fields at $t=50(\triangle t=0.001)$

145 5., 2,, Navier-Stokes, Petrov-Galerkin,,,, 2 interface 1) FEM, 2)BEM, 1 CPU 3)BEM, 4) Petrov-Galerkin,, [1] Peyret,R. and Taylor,T.D. : Computational Methods for Fluid Flow, Springer- Verlag, 1983. [2] Thomasset,F. : Implementation of Finite Element Methods for Navier-Stokes Equations, Springer-Verlag, 1981. [3] Brebbia, C.A., Telles, T.C.F. and Wrobel, L.C. : Boundary Element Techniques, Springer-Verlag, 1984. [4], :,, 1987 [5] Zienkiewicz,O.C., Kelly,D.W. and Bettess,P. : The coupling of the finite element method and boundary solution procedures, Int. J. Numer. Meths. Eng., Vol.11, 355-375, 1977.

146 [6] Wendland,W.L. : On asymptotic error estimates for combined BEM and FEM, (Eds., Stein,E. /Wendland,W.L.), Finite Element and Boundary Element Techniques from Mathematical and Engineering Point of View, Springer-Verlag, 1988. [7],, $li $, :, 5 [8], :, 199-204, 1991. Petrov-Galerkin,, 15, 11-16, 1991. [9] Nallasamy, M. and Prasad, K.K. : On cavity flow at high Reynolds numbers, J. Fluid Mech., Vol.79, part 2, pp.391-414, 1977. [10] Ghia, U., Ghia, K.N. and Shin, C.T. : High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method, J. Comput. Phys., 48, pp.387-411, 1982. [11] Schreiber, R. and Keller, H.B. : Driven cavity flows by efficient numerical tech- Iuques, J. Comput. Phys., 49, pp.310-333, 1983. [12] Tamura, T. and Kuwahara, K. : Direct finite difference computation of turbulent flow around a circular cylinder, Numerical Methods in Fluid Dynamics 2, 645-650, 1989. [13], : Petrov-Galerkin 2, 177-182, 1991., 5