OK (S) vncviewer UNIX EDS vncviewer : VNC server: eds.efc.sec.eng.shizuoka.ac.jp:51 OK 2

Similar documents
GraphicsWithPlotFull.nb Plot[{( 1), ( ),...}, {( ), ( ), ( )}] Plot Plot Cos x Sin x, x, 5 Π, 5 Π, AxesLabel x, y x 1 Plot AxesLabel

sin x

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f

としてもよいし,* を省略し, その代わりにスペースを空けてもよい. In[5]:= 2 3 Out[5]= 6 数値計算 厳密な代数計算 整数および有理数については, 厳密な計算がなされます. In[6]:= Out[6]= In[7]:= Out[7]= 2^

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

/Users/yamada/Documents/webPage/public_html/kkk/ 8 プロット

1

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)


「産業上利用することができる発明」の審査の運用指針(案)


x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

44 4 I (1) ( ) (10 15 ) ( 17 ) ( 3 1 ) (2)

生活設計レジメ


I II III 28 29

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B


f(x,y) (x,y) x (x,y), y (x,y) f(x,y) x y f x (x,y),f y (x,y) B p.1/14

.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0,

(, ) (, ) S = 2 = [, ] ( ) 2 ( ) 2 2 ( ) 3 2 ( ) 4 2 ( ) k 2,,, k =, 2, 3, 4 S 4 S 4 = ( ) 2 + ( ) ( ) (

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)

CALCULUS II (Hiroshi SUZUKI ) f(x, y) A(a, b) 1. P (x, y) A(a, b) A(a, b) f(x, y) c f(x, y) A(a, b) c f(x, y) c f(x, y) c (x a, y b)

i 18 2H 2 + O 2 2H 2 + ( ) 3K


x ( ) x dx = ax

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

春期講座 ~ 極限 1 1, 1 2, 1 3, 1 4,, 1 n, n n {a n } n a n α {a n } α {a n } α lim n an = α n a n α α {a n } {a n } {a n } 1. a n = 2 n {a n } 2, 4, 8, 16,


[ ] x f(x) F = f(x) F(x) f(x) f(x) f(x)dx A p.2/29


2.2 ( y = y(x ( (x 0, y 0 y (x 0 (y 0 = y(x 0 y = y(x ( y (x 0 = F (x 0, y(x 0 = F (x 0, y 0 (x 0, y 0 ( (x 0, y 0 F (x 0, y 0 xy (x, y (, F (x, y ( (


(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

i


Wide Scanner TWAIN Source ユーザーズガイド

DE-resume

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

6. Euler x

ax 2 + bx + c = n 8 (n ) a n x n + a n 1 x n a 1 x + a 0 = 0 ( a n, a n 1,, a 1, a 0 a n 0) n n ( ) ( ) ax 3 + bx 2 + cx + d = 0 4

1 12 ( )150 ( ( ) ) x M x 0 1 M 2 5x 2 + 4x + 3 x 2 1 M x M 2 1 M x (x + 1) 2 (1) x 2 + x + 1 M (2) 1 3 M (3) x 4 +

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

i



³ÎΨÏÀ

< 1 > (1) f 0 (a) =6a ; g 0 (a) =6a 2 (2) y = f(x) x = 1 f( 1) = 3 ( 1) 2 =3 ; f 0 ( 1) = 6 ( 1) = 6 ; ( 1; 3) 6 x =1 f(1) = 3 ; f 0 (1) = 6 ; (1; 3)

曲面のパラメタ表示と接線ベクトル

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

untitled

福祉行財政と福祉計画[第3版]

1 29 ( ) I II III A B (120 ) 2 5 I II III A B (120 ) 1, 6 8 I II A B (120 ) 1, 6, 7 I II A B (100 ) 1 OAB A B OA = 2 OA OB = 3 OB A B 2 :

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+

v8 Mathematica ( ) [ ], { } Expand[(a+b)^2] Plot[Sin[x], {x, 0, 2Pi}] Windows Mathematica Mathematica 2.2 v8 Mathematica = ( ) = s

A(6, 13) B(1, 1) 65 y C 2 A(2, 1) B( 3, 2) C 66 x + 2y 1 = 0 2 A(1, 1) B(3, 0) P 67 3 A(3, 3) B(1, 2) C(4, 0) (1) ABC G (2) 3 A B C P 6

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

function2.pdf

+,-,*,/,^ Mathematica 2Pi * + 2; (Enter) Maple + 2 (Shift+Enter) Mathematica 3 Maple abs(x) Mathematica Abs[x] : % %+ : ^ *, / +, - 23^4*2 + 4/2; (Mat

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

Transcription:

Mathematica I (2001 5 31, 6 7 ) UNIX EDS vncviewer Internet Exploler http://www.efc.sec.eng.shizuoka.ac.jp/admin/pubsoft/ vncviewer.exe : 1

OK (S) vncviewer UNIX EDS vncviewer : VNC server: eds.efc.sec.eng.shizuoka.ac.jp:51 OK 2

vncviewer kterm Exit Fvwm Yes, Really Quit 3

I Mathematica 1 Mathematica 1.1 vncviewer UNIX EDS kterm mathematica Enter Mathematica 1.2 File Save Untitled-1.nb part1.nb OK.nb 1.3 File Save As 1.2 OK 4

1.2 1.4 File New 1.5 File Open 1.6 Mathematica File Quit 2 Mathematica part1.nb 1+1 SHIFT Enter 3 + 5 5

3 Mathematica 3.1 3 4 3 4 3 4 5 8 2 3 27 N [ ] 5 N 8 N [ 2 ] N[π] 3.2 Solve [x 2 +ax+b==0, x] 6

%11 /. a > 1 %11 Out[11] Out[11]:= a =1 a b %11 /. {a > 1, b > 2} 3.3 Factor [x 3 19x + 30] Factor [x 100 1] Expand [(a + a 2 x+x 2 ) 3 ] 7

3.4 Plot [x 2 +x 2, {x, 5, 4}] x x 2 + x 2 5 x 4 y = x fig1 = % fig2 = Plot [x, {x, 5, 4}] Show [fig1, fig2] fig1 = % fig1 % % y = e x y = log x y = x Plot[{2 x, Log[2, x], x}, {x, 0., 5}, PlotStyle > {Dashing[{0, 0}], Dashing[{0, 0}], Dashing[{0.01, 0.01}]} PlotRange > {{0, 5}, {0, 5}}, AxesLabel > { x, y }] 3.5 << Graphics`ImplicitPlot` ImplicitPlot [x 2 +y 2 == 1, {x, 1, 1}, {y, 1, 1}] ImplicitPlot [x 2 +y 2 == 1, {x, 1, 1}, {y, 1, 1}, AxesOrigin > {0, 0}, AxesLabel > { x, y }] 8

3.6 Limit[Sin[x]/x, x > 0] n k=1 k=1 k 2 ( ) k 1 2 3.7 f[x ]:=x 3 3x d1 = D[f[x], x] d2 = D[f[x], {x, 2}] << Graphics`Legend` Plot[{f[x], d1, d2}, {x, 3, 3}, PlotStyle > {Dashing[{0, 0}], Dashing[{0.01, 0.01}], Dashing[{0.02, 0.02}]}, PlotLegend > { f(x), f (x), f (x) }, LegendPosition > {0.3, 1.2}, AxesLabel > { x, y }] x f(x) f[x ] := a x(1 x) f[x ] x 3.8 Kernel Quit Kernel Local Yes f[x ] := a x(1 x) f[0.5] g[x ]:=x Solve [f[x] == g[x], x] a = 2; Plot [{f[x], g[x]}, {x, 0, 1}] f[1 1 ] a 9

1. C : y = ax(1 x) l : y = x 0 <a 4 (1) 0 x 1 C l a (2) 0 x 1 C l 2 a (3) 1 <x 1 2 C l X a (4) (3) X (5) (4) 1 a 10

II 4 1( ). a x 0 ax 0 a 2 x 0 n a n 1 x 0 Mathematica chu[a, x0 ] := Table [a n 1 x0, {n, 10}] chu[a, x0] chu[2, 1] ListPlot[chu[2, 1]] ListPlot[chu[2, 1], PlotJoined > True] n a n 1 x 0 n x n (1) x n+1 = ax n 5 (2) (1) n +1 n x n+1 = f(x n ), n =0, 1, 2, f(x) ex. (1) f(x) =ax f(x) x 0 (2) n =0, 1, 2, x 0,x 1,x 2, f[x ]:=ax NestList[f, 1, 5] Nest[f, 1, 20] a=0.5; ListPlot[NestList[f, 1, 20], PlotStyle > PointSize[0.02], PlotJoined > True] 11

2. 6 2( ). 18 1 19 ( dn dt = r 1 N ) (3) N. K N t K r (3) N t tmp = NDSolve[{x [t] == 4(1 x[t])x[t], x[0] == 0.1}, x[t], {t, 0, 10}]; Plot[Evaluate[x[t]/.tmp], {t, 0, 5}, PlotRange > {{0, 5}, {0, 2}}] Enter 12

3( ). x y dx = r(1 by)x (4) dt dy =( c + dx)y. dt r = 4; b = 0.5; c = 1; d = 2; tmp = NDSolve[{x [t] == r(1 b y[t])x[t], y [t] == ( c + d x[t])y[t], x[0] == 1, y[0] == 1}, {x[t], y[t]}, {t, 0, 30}]; ParametricPlot[Evaluate[{x[t], y[t]}/.tmp], {t, 0, 30}, AxesOrigin > {0, 0}] Plot[Evaluate[x[t]/.tmp[[1]]], {t, 0, 30}] Plot[Evaluate[y[t]/.tmp[[1]]], {t, 0, 30}] Enter Enter 3.5 3 2.5 2 1.5 1 0.25 0.5 0.75 1 1.25 1.5 1.5 1.25 1 0.75 0.5 0.25 3.5 3 2.5 2 1.5 5 10 15 20 25 30 5 10 15 20 25 30 13

7 2 f(x) x 0 f(x) =αx(1 x), 0 x 0 1 0 <a 4 (5) x n+1 = αx n (1 x n ), 0 <x 0 < 1. (3) [4] 3. x 0 =0.9 a 1 4. α 3 4 toi3[α, xini, n Integer] := ( Enter f[x ]:=α x(1 x); Enter data = Table[{i, Nest[f, xini, i]}, {i, 0, n}]; Enter ten = ListPlot[data, PlotStyle > {Hue[1], PointSize[0.03], } DisplayFunction > Identity]; Enter sen = Graphics[{Hue[0.3], Thickness[0.01], Line[data]}]; Enter Show[ten, sen, PlotRange > {{0, n}, {0, 1}}, AxesLabel > { n, x n }, DisplayFunction > $DisplayFunction]; ) α =1 x 0 =0.5 n =10 toi3[1, 0.5, 10] 14

III 8 f(x) (2) y = f(x) f(x) = 1 2 x Step 1 : y = f(x) x x 0 A 0 = A 0 (x 0,f(x 0 )) = (x 0,x 1 ) Step 1 : y = x y x 1 B 1 = B 1 (x 1,x 1 ) Step 2 : y = f(x) x x 1 A 1 = A 1 (x 1,f(x 1 )) = (x 1,x 2 ) Step 2 : y = x y x 2 B 2 = B 2 (x 2,x 2 ) y y = x B 0 y = f(x) B x 1 = f(x 0 ) 1 A 0 B f(x 1 ) 2 A 1 A 2 x 0 x 2 x 1 x 0 1: f(x) = 1 2 x Step y = x B 1, B 2, B 3, (2) x 0,x 1,x 2, (x 0,x 0 ) B 0 y = x B 0, B 1, B 2, 15

9 {B n } (n =0, 1, 2, ) Mathematica B 0, B 1, B 2, 5. f(x) =mx x 0 =12 m 1 2, 1, 2 3, 3 2, 2 B 0, B 1, B 2, y 12 10 8 6 4 2 2 4 6 8 10 12 2. f(x) = 1 2 x B n n!! x y 350 300 250 200 150 100 50 50 100 150 200 250 300 350 3. f(x) =2x B n n!! x 16

10 f(x) =2x? f(x) =2x y = x X f(x) B n y y =2x y = x y = f(x) X 0 x 4: y =2x f(x) ( 1, 1) r 2 y = x r<1 6. r {B n }? x 0 = 0.11 r = 1, 0, 1, 1, 3, 2 2 2 2 r =0!! r = 1!! 7. r = 2 ( 5 ) x 0 {B n }? x 0 0.1 0.11 0.101 r 1 {B n } = ( ) 17

1 y y = x X =( 2, 2) 3 3 y = f(x) 0 1 2 1 x 5: f(x) =1 2x 1 11 7 (5) x n+1 = ax n (1 x n ), 0 <x 0 < 1 a 0 4 {B n }? Mathematica 1 (I) (IV) (I) 0 <a 1 5 m<1 (II) 1 <a 2 5 m>1 6 0 r<1 (III) 2 <a 3 5 m>1 6 1 <r<0 (IV) 3 <a 4 5 m>1 6 r 1? 8. (I) (IV) a {B n } (IV)!! a a 4 a 3.57 9. a a 4 {B n } x 0 0.1 0.101 18

12 {x n } n 10. 3 4 0 <a<a n {x n }. n {x n } (1 ) 4. (i) 0 <a 1 = 0 (ii) 1 <a 2 = 1+a a (iii) 2 <a 3 = 1+a a (iv) 3 <a 1+ 6 = (a+1) (a+1)(a 3), 2a (v) a =4 = 0 1 (a+1)+ (a+1)(a 3) 2a ( ) (i) (iii) (iv) x 0 = 1+a (v) a 0 1 f(x) =ax(1 x) a {x n } x n 1 0.8 0.6 0.4 0.2 0.5 1 1.5 2 2.5 3 3.5 4 a 6. f(x) =ax(1 x) 19

13 (2D) { xn+1 = y n sin x n bxn r y n+1 = x n + a 7. (2D) (a =3,b=0.3, r=0.3, x 0 =0.1, y 0 =0) [1], - vs -, 1996. [2],, 1996. [3],, 1995. [4], - -,, 1986. [5], - -,, 1991. 20

[6],,, 1993. [7],, 1994. [8], Mathematica, 1997. [9], Mathematica [ ], 1995. [10], Mathematica [ ], 1995. [11], Mathematica, 2000. [12], Mathematica 3.0, 1998. [13], Mathematica, 1994. Mathematica $DisplayFunction, 14 %, 7, 8 /., 7,12, 13 :=, 9, 9, 11, 14 << Graphics, 8, 9 AxesLabel, 8, 9, 14 AxesOrigin, 8, 13 D, 9 Dashing, 8, 9 DisplayFunction, 14 Evaluate, 12, 13 Expand, 7 Factor, 7 Graphics, 14 Hue, 14 Identity, 14 ImplicitPlot, 8 Legend, 9 LegendPosition, 9 Limit, 9 Line, 14 ListPlot, 11, 11, 14 N, 6 NDSolve, 12, 13 Nest, 11, 14 NestList, 11 ParametricPlot, 13 Plot, 8, 9, 12, 13 PlotJoined, 11, 11 PlotLegend, 9 PlotRange, 8, 12, 14 PlotStyle, 8, 9, 11, 14 PointSize, 11, 14 Show, 8, 14 Solve, 6, 9 Table, 11, 14 Thickness, 14 37