H.Haken Synergetics 2nd (1978)

Similar documents
1 s 1 H(s 1 ) N s 1, s,, s N H({s 1,, s N }) = N H(s k ) k=1 Z N =Tr {s1,,s N }e βh({s 1,,s N }) =Tr s1 Tr s Tr sn e β P k H(s k) N = Tr sk e βh(s k)

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

( ) I( ) TA: ( M2)

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

TOP URL 1

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

[ ] (Ising model) 2 i S i S i = 1 (up spin : ) = 1 (down spin : ) (4.38) s z = ±1 4 H 0 = J zn/2 i,j S i S j (4.39) i, j z 5 2 z = 4 z = 6 3

Note.tex 2008/09/19( )

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

LLG-R8.Nisus.pdf

30

プログラム

量子力学 問題

meiji_resume_1.PDF

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

0406_total.pdf

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

Radiation from moving charges#1 Liénard-Wiechert potential Yuji Chinone 1 Maxwell Maxwell MKS E (x, t) + B (x, t) t = 0 (1) B (x, t) = 0 (2) B (x, t)

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

QMII_10.dvi

201711grade1ouyou.pdf

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1)

, 1.,,,.,., (Lin, 1955).,.,.,.,. f, 2,. main.tex 2011/08/13( )

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

基礎数学I

TOP URL 1

chap10.dvi

構造と連続体の力学基礎

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

all.dvi

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

Z: Q: R: C: sin 6 5 ζ a, b

untitled

( )


keisoku01.dvi

Ł\”ƒ-2005

第90回日本感染症学会学術講演会抄録(I)

本文/目次(裏白)

成長機構

Onsager SOLUTION OF THE EIGENWERT PROBLEM (O-29) V = e H A e H B λ max Z 2 Onsager (O-77) (O-82) (O-83) Kramers-Wannier 1 1 Ons

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

振動と波動


tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,,

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

b3e2003.dvi

( ) ,

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

: , 2.0, 3.0, 2.0, (%) ( 2.

TOP URL 1

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

2 1 x 2 x 2 = RT 3πηaN A t (1.2) R/N A N A N A = N A m n(z) = n exp ( ) m gz k B T (1.3) z n z = m = m ρgv k B = erg K 1 R =

λ n numbering Num(λ) Young numbering T i j T ij Young T (content) cont T (row word) word T µ n S n µ C(µ) 0.2. Young λ, µ n Kostka K µλ K µλ def = #{T

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K


. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n


B ver B

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

untitled

総研大恒星進化概要.dvi

Untitled

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j


I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

gr09.dvi

I

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x

chap9.dvi

第86回日本感染症学会総会学術集会後抄録(I)

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

(5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b)

chap03.dvi

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

SO(2)

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

i Γ

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

Chapter9 9 LDPC sum-product LDPC 9.1 ( ) 9.2 c 1, c 2, {0, 1, } SUM, PROD : {0, 1, } {0, 1, } SUM(c 1, c 2,, c n ) := { c1 + + c n (c n0 (1 n

,, Andrej Gendiar (Density Matrix Renormalization Group, DMRG) 1 10 S.R. White [1, 2] 2 DMRG ( ) [3, 2] DMRG Baxter [4, 5] 2 Ising 2 1 Ising 1 1 Ising



³ÎΨÏÀ

Transcription:

27 3 27 ) Ising Landau Synergetics Fokker-Planck F-P Landau F-P Gizburg-Landau G-L G-L Bénard/ Hopfield

H.Haken Synergetics 2nd (1978)

(1) Ising m T T C 1: m h Hamiltonian H = <i,j> J ij S i S j h i S i, (1) J ij = J H = J <i,j> S i S j h i S i, (2) Ising J > 0 J < 0 S i = {1, 1} < i, j >

i-th m m =< S i >, S i = m + δs i H = J <i,j> (m + δs i )(m + δs j ) h i = Jm 2 N B + Jm 2 zn (Jmz + h) i S i S i, (3) N N B z 1 Jmz Self-consistency S m =< S i > = 1 S N S i e βh S 1 S N e βh = tanh[β(jmz + h)] (4) 1 y 0-1 y=tanh( J z m) y=m m 2: βjz > 1

Landau m f(m) = f 0 (β) + a(β)m 2 + b(β)m 4 + (5) Landau m order parameter m f(m) df(m) dm = 0. (6) 2 f - f 0 a > 0 0 a < 0 m -1 0 1 3: m m a < 0 m 0 f(m) = f 0 + am 2 + bm 4 hm Landau 1 log Z(m) = f(m), (7) Nβ Z(m) = e βh(m), (8) S 1 S N Z(m) = e βjm2 (N B zn) [2 cosh β(jmz + h)] N, (9) f(m) = 1 N Jm2 (N B zn) 1 log[2 cosh β(jmz + h)], (10) β

m Landau self-consistency 1 N N i=1 S i = m Ising Onsarger m Z(m) = Tr[δ(m 1 N i S i)e βh ] Z Z = dmz(m) (11) m( r) =< m( r) > +δm( r) δm( r) Landau Ginzburg-Landau G-L Green < δm( r)δm( r ) > = G( r, r ), (12) δm( r) = β d r G( r, r )δh( r ). (13) Green G-L F F = d r f(m( r)), (14) f(m( r)) = f 0 (β) + A(β)m 2 ( r) + B(β)m 4 ( r) + D 2 m( r) 2 h( r)m( r).(15) δf δm = 0 2Am( r) + 4Bm 3 ( r) D 2 m( r) = h( r), (16) h( r) = h + δh( r), m( r) = m + δm( r) (2A + 12B m 2 D 2 )δm( r) = δh( r). (17)

m Landau Green G( r r ) = 1 e r r /ξ 4πβD r r. (18) D 2A ξ = = D = 4A D 2a(T T c ) D 4a(T c T ) if T > T c if T < T c < δm( r)δm( r ) > 1. (19) r r d 2 Lagevin δf m( r, t) = Γ + ζ( r, t), (20) t δm( r, t) < ζ( r, t)ζ( r, t ) > = 2T Γδ( r r )δ(t t ), (21) t m( r, t) = Γ(2Am + 4Bm3 D 2 m) + ζ( r, t). (22) time dependent Ginzburg Landau TDGL Γ2A (T T c ) critical slowing down

Synergetics F-P Landau q = (q 1, q N ) Langevin d dt q = K( q), (23) d dt q = K( q) + F (t), (24) < F i (t)f j (t ) > = Q ij δ(t t ), (25) q P ( q, t) F-P t P = q( KP ) + 1 2 Q ij = Q = const. P eq i,j Q ij 2 q i q j P (26) KP eq + 1 2 Q qp eq = 0. (27) K = q V 2V ( q) P eq ( q) exp{ Q } (28) V ( q) V, as q q V

Landau d df m = Γ dt dm (29) m = 0, m 1 Langevain f (m) 0 m 1 m 4: d m dt = df Γ + F (t), dm (30) < F (t)f (t ) > = Qδ(t t ) (31) F-P P eq (m) exp{ 2Γf(m) Q } (32) m = m 1 m 1 Landau f(m) m P eq (m) Z(m) = e βnf(m) (33) P eq (m) = e βnf(m) Z(m)dm. (34) 2Γ βn Q

F-P G-L m G-L G-L functional f f({m( r)}) = f 0 + d r[ α 2 m2 ( r) + β 4 m4 ( r) + γ 2 m( r) 2 ], (35) P eq ({m( r)}) = e βf({m( r)}) D{m}e βf (36) Γδf m( r, t) = t δm( r) = αm βm 3 + γ 2 m (37) t m = αm βm3 + γ 2 m + F (38) F-P t P = δ d r{ δm( r) (αm + βm3 γ 2 m) + Q 2 δ 2 }P (39) δm( r) 2 P eq ({m( r)}) exp{ 2Γ f({m( r)})} (40) Q G-L order parameter ξ TDGL t ξ = αξ β ξ 2 ξ + γ 2 ξ + F, (41) P eq ({ξ}) exp{ 2Γ d r[α ξ 2 + β Q 2 ξ 4 + γ ξ 2 ]} (42) t U µ = G µ (, U; σ) + D µ 2 U µ + F µ (t),

G µ U, σ σ < σ c U 0 σ > σ c U 0 U µ = U 0 µ + q µ ( r, t) ( K( ))q = g(, q) + F (t), (43) t ( K( ))q = 0, (44) t marginal stable mode σ marginal ξ ξ ξ slaving principle H.Haken σ

Ginzburg-Landau I.Prigogine Bénard/ z y d x 5: Boussinesq u = 0, (45) t u + u u = ν 2 u 1 π + αgẑθ, ρ 0 (46) t θ + u θ = κ 2 θ + βw, (47) u = (u, v, w), (48) θ = T (T 0 βz). (49)

u = θ = π = 0 π t 2 w = ν( 2 ) 2 w + αg( 2 x + 2 )θ. (50) 2 y2 k = (k k, k y ) (w, θ) = (w m, k (t), θ m, k (t)) sin mπz d exp(i k r), (51) (w m, k (t), θ m, k (t)) e λt. (52) k c marginal R = g d 3 T > 0 < 0 R C ~ k c ~ k = k d 6: m = 1 x w(x, y, z) = (Z + Z) sin πz d, (53) Z = W e ikcx, (54) W super-critical,r > R c R R c = µr c, λ( k c ) = µλ 1 W (t) W saturation d dt W = µλ 1W g W 2 W, (55)

g ky kc kx 7: k W µ 8: (x, y) super-critical k c k = k c + δ k. (µ 1) δ k k c W λ( k) = µλ 1 D(k k c ) 2, D > 0, (56) = µλ 1 D(k x k c + k2 y 2k c ) 2. (57)

t W = µλ 1W g W 2 W + D( x i 2 2k c y 2 )2 W. (58) Newell-Whitehead N-W Ψ t W = δψ, (59) δ W Ψ = d r( µλ 1 W 2 + g 2 W 4 + D W x i 2 W 2k c y 2 2 ). (60) Ψ k c λ( k) = µλ 1 D 1 (k x k cx ) 2 D 2 (k y k cy ) 2 (61) Ginzburg-Pitaevskii F-P (H.Haken) Bousinesq H.Haken

µ Hoph x ν x ν = α ν Z, (62) Z = W e iω 0t W λ (63) t W = µλ 1W. (64) t W = µλ 1W g W 2 W. g : complex, (65) λ(k) = iω 0 + µλ 1 Dk 2, (66) D G-L t W = µλ 1W g W 2 W + D 2 W, (67) λ 1, g, D G-L

Hopfield Hopfield Hopfield ξ(t ) 1 1 θ 1 ξ 1 (t +1) ξ i (t ) w ij j θ j ξ i (t +1) ξ N (t ) N ξ N (t +1) θ N 9: Hopfield

N ξ i (t + 1) = sgn( w ij ξ j (t) θ i ), (68) sgn(x) = { j=1 1 if x > 0 1 if x < 0 ξ = {1, 1} θ i I i = I w ij = 1 N P ξ µ i ξµ j. (69) µ P N N µ=1 ξ 1 µ ξ 2 µ ξ N µ 10: H(t) = 1 w ij ξ i (t)ξ j (t) + θ i ξ i (t) (70) 2 i,j i d H (ξ µ i, ξ i) = 1 N (ξ µ i ξ i ) 2, (71) 4 i=1 = N 2 1 2 N ξ µ i ξ i. (72) i=1

0 d H N E E = 1 2N P [N 2d H ({ξ µ i }, {ξ i})] 2. (73) µ=1 d H ({ξ µ i }, {ξ i}) 0 N ξ i = ξ µ i ξ i = ξ µ i E E = 1 2N P [N 2( N 2 1 ξ µ i 2 ξ i)] 2, µ=1 H = 1 P ξ µ i 2N ξµ j ξ iξ j, µ=1 i,j = 1 w ij ξ i ξ j. (74) 2 i,j i H(t) = E(t) + i θ i ξ i (t). (75) ξ I (t + 1) = ξ I (t) H = H(t + 1) H(t) = 0 ξ I (t + 1) = ξ I (t) H = E + θ I (ξ I (t + 1) ξ I (t)), (76) = 2ξ I (t + 1) j I w Ij ξ j (t) + θ I (ξ I (t + 1) ξ I (t)) = 2ξ I (t + 1) j w Ij ξ j (t) + 2ξ I (t + 1)w II ξ I (t) + θ I (ξ I (t + 1) ξ I (t)) = 2sgn( j w Ij ξ j (t) θ I )( j w Ij ξ j (t) θ I ) 2w II 2θ I ξ I (t + 1) + θ I (ξ I (t + 1) ξ I (t)) = 2 j w Ij ξ j (t) θ I 2w II < 0. (77)

H ξ i ξ i µ 11: H H({ξ i }) ξ i = ±ξ µ i GA

Hopfield TDGL