Untitled

Similar documents
64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

1 [ 1] (1) MKS? (2) MKS? [ 2] (1) (42.195k) k 2 (2) (3) k/hr [ 3] t = 0 10 ( 1 velocity [/s] 8 4 O

1 1.1 [ 1] velocity [/s] 8 4 (1) MKS? (2) MKS? 1.2 [ 2] (1) (42.195k) k 2 (2) (3) k/hr [ 3] t = 0

Gmech08.dvi

34号 目 次

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

dynamics-solution2.dvi

t θ, τ, α, β S(, 0 P sin(θ P θ S x cos(θ SP = θ P (cos(θ, sin(θ sin(θ P t tan(θ θ 0 cos(θ tan(θ = sin(θ cos(θ ( 0t tan(θ


#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

1 (1) (2)

- 2 -


PR映画-1

II III I ~ 2 ~

中堅中小企業向け秘密保持マニュアル




1 12 ( )150 ( ( ) ) x M x 0 1 M 2 5x 2 + 4x + 3 x 2 1 M x M 2 1 M x (x + 1) 2 (1) x 2 + x + 1 M (2) 1 3 M (3) x 4 +


m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d



85 4

数学演習:微分方程式

() (, y) E(, y) () E(, y) (3) q ( ) () E(, y) = k q q (, y) () E(, y) = k r r (3).3 [.7 ] f y = f y () f(, y) = y () f(, y) = tan y y ( ) () f y = f y

LLG-R8.Nisus.pdf

( ) ( )

2 Chapter 4 (f4a). 2. (f4cone) ( θ) () g M. 2. (f4b) T M L P a θ (f4eki) ρ H A a g. v ( ) 2. H(t) ( )

1 1 3 ABCD ABD AC BD E E BD 1 : 2 (1) AB = AD =, AB AD = (2) AE = AB + (3) A F AD AE 2 = AF = AB + AD AF AE = t AC = t AE AC FC = t = (4) ABD ABCD 1 1


:,, : - 7 -

高校生の就職への数学II

(1) 3 A B E e AE = e AB OE = OA + e AB = (1 35 e ) e OE z 1 1 e E xy e = 0 e = 5 OE = ( 2 0 0) E ( 2 0 0) (2) 3 E P Q k EQ = k EP E y 0

[1.1] r 1 =10e j(ωt+π/4), r 2 =5e j(ωt+π/3), r 3 =3e j(ωt+π/6) ~r = ~r 1 + ~r 2 + ~r 3 = re j(ωt+φ) =(10e π 4 j +5e π 3 j +3e π 6 j )e jωt

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

Gmech08.dvi

08-Note2-web

( ) 2.1. C. (1) x 4 dx = 1 5 x5 + C 1 (2) x dx = x 2 dx = x 1 + C = 1 2 x + C xdx (3) = x dx = 3 x C (4) (x + 1) 3 dx = (x 3 + 3x 2 + 3x +

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

数値計算:常微分方程式

‘¬”R.qx

v_-3_+2_1.eps

( ) g 900,000 2,000,000 5,000,000 2,200,000 1,000,000 1,500, ,000 2,500,000 1,000, , , , , , ,000 2,000,000

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π


I II III 28 29

I ( ) 2019

生活設計レジメ

最新耐震構造解析 ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 3 版 1 刷発行時のものです.

44 4 I (1) ( ) (10 15 ) ( 17 ) ( 3 1 ) (2)

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R


main.dvi

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

function2.pdf

untitled


2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP


「ビジネスマナー研修プログラム」


表1-4

7310_J_Print.qxd

00_01



1 2

458


表_pdf用


<91E F18E7396AF8CF68A4A8D758DC0837C E815B2E706466>

健康管理だより vol.49

16_表1_表4A



1

メトトレキサート pdf



F0238_h1_h4

H1_4のコピー

1-12


OM_J_MFS2B_3.5B_body_CS_151023N.indd


() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

10 4 2

70 : 20 : A B (20 ) (30 ) 50 1


1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l

知能科学:ニューラルネットワーク

知能科学:ニューラルネットワーク



Microsoft Word doc

Transcription:

http://www.ike-dyn.ritsumei.ac.jp/ hyoo/dynamics.html 1 (i) (ii) 2 (i) (ii) (*) [1] 2 1 3 1.1................................ 3 1.2..................................... 3 2 4 2.1.................................... 4 2.1.1 G(x(t), y(t)).................... 4 2.1.2............................. 4 2.2................................ 4 2.2.1............................. 4 2.2.2............................. 4 2.3....................... 4 3 5 3.1 [1]....................................... 5 3.2 [1]....................................... 6 3.3 [1]....................................... 7 3.4 [1]....................................... 8 3.5 [3]....................................... 9 1

3.6 [3]....................................... 10 3.7 [2]....................................... 11 3.8 [2]....................................... 12 3.9 [5]....................................... 13 3.10 [5]....................................... 14 3.11 [5] [ ]................................... 15 3.12 [3]....................................... 16 3.13 [3]....................................... 17 3.14 [3] [ ]................................... 18 3.15 [4] [ ]................................... 19 3.16 [2]....................................... 20 3.17 [2] [ ]................................... 21 3.18 [6]....................................... 22 3.19 [7]....................................... 23 3.20 [8]....................................... 24 3.21 [8]............................. 25 3.22 [8]............................. 26 [1] [2] 1a-1b R.W.Serway [3] I,II [4] [5] [6] [7] [8] W.T.Thomson 2

1 1.1 ( ) ( ) I 0 θ(t) = τ0 (1.1) I 0 1 [1] θ(t) 2 τ 0 3 [1]p62-64 1.2 θ t Z θ(t) θ(0) ( ) = Z θ(t) I 0 θ(t)dθ = τ 0 dθ (1.2) = = Z t 0 Z t I 0 θ(t) θdt θ(0) Ω d 1 0 dt 1 2 I 0{ θ(t)} 2 2 I 0( θ(t)) 2 t 0 æ dt (1.3) E R (t) 1 2 I 0{ θ(t)} 2 (1.4) E R (t) E R (0) Z θ(t) θ(0) τ 0 dθ (1.5) [Memo] [1] 2-9(p79) 1 2 θ(t) θ(t) 3 τ N 3

2 2.1 2.1.1 G(x(t), y(t)) Mẍ(t) = F x Mÿ(t) = F y (2.1) 2.1.2 I G θ(t) = τg (2.2) I G θ(t) τ G 2.2 2.2.1 E K Kinetic Energy ~ V (t) = (ẋ(t), ẏ(t)), W (t) = θ(t). E K (t) = 1 2 M Ø ØØ ~ V (t) Ø ØØ 2 + 1 2 I GW 2 (t) (2.3) 2.2.2 E P Potential Energy M Mgh 2.3 d dt (E K + E P ) = 0 (2.4) 4

3 3.1 [1] [ 2-3]p65- I r m N 0 ( ) N 0 = 0 I = 1 2 Mr2 M Ans. θ(t) 1 = r g 1 + M 2m 5

3.2 [1] [ 2-6](p73-) M r I f 0 x Ẍ f 0 ( ) I = 1 2 Mr2 f 0 Ans. Ẍ(t) = 2 3 M 6

3.3 [1] [ 2-7](p75-) M r I α Ẍ ( ) I = 1 2 Mr2 Ans. Ẍ(t) = 2 3 g sin α 7

3.4 [1] [ 2-8](p77-) M r I ( ) I = 1 2 Mr2 Ans. Ẍ(t) = 2 3 g 8

3.5 [3] M R I MR 2 1 2 MR2 ( ) h s 2gh Ans. V = 1 + I Mr 2 9

3.6 [3] M R V 0 I = 1 2 MR2 Ans. h = 3V 0 2 4g 10

3.7 [2] L M O I 0 = 1 3 ML2 Ans. W = r 3g L 11

3.8 [2] R M L ω = 12gR/L O I 0 = 1 12 ML2 12

3.9 [5] Ans. ω = r 3g 2l 13

3.10 [5] I 0 = ml 2 Ans. ω = a r k l m 14

3.11 [5] [ ] 13.2 I 0 = 1 2 Mr2 M s k Ans. ω = m + 1 2 M 15

3.12 [3] 16

3.13 [3] M r l I G = 2 5 mr2 O s g Ans. ω = l + r + 2 5 r 2 l+r 17

3.14 [3] [ ] O (1) O I = X i m i r 2 i (2) t θ(t) O (3) θ(t) Ans. ω = r 2g 5l 18

3.15 [4] [ ] (1) O ml 2 Ans. (2) kc 2 > mgl 19

3.16 [2] R M 2 5 MR2 Ans. h = 2 5 R 20

3.17 [2] [ ] M I = 1 3 ML2 k (1) y1(t)+y2(t) 2 y 1 (t), y 2 (t) (2) θ(t) θ(t) Ans. (1) ω = r 2k r 3k M, (2) ω = M ( ) 4.3 10 3 [kg / m] L = 6[m] k = 1.5 10 3 [N / m] 21

3.18 [6] Ans. ω = ( ) M r k r k m, ω = m 2m + M I = 2ml 2 + 1 3 Ml2 22

3.19 [7] θ 1 (t), θ 2 (t) Ans. ω = r g l, ω = r g l + 2k a 2 m l 23

3.20 [8] 24

3.21 [8] (*) (9.2) 25

3.22 [8] l m C G h = 2 π l C I C = ml 2 (1) t θ(t) O G(x(t), y(t)) r, θ(t), h ~ OG = ~ OA + ~ AC + ~ CG (2) I G G E K = 1 2 m {ẋ(t)} 2 + {ẏ(t)} 2 + 1 2 I G{ θ(t)} 2 (3) θ(t) E P (4) d dt (E K + E P ) = 0 θ(t) r g Ans. ω = (π 2)l 26