生体内に存在する蛋白質の中には、20種類の基本アミノ酸だけでは機能の発現ができない蛋白質が存在する

Similar documents
ナノの技術をバイオに応用

1_alignment.ppt

会報35号表紙.pdf


宇宙環境利用蛋白質結晶生成応用利用実証プロジェクトのご案内

The Phase Behavior of Monooleoylglycerol-Water Systems Mivoshi Oil & Fat Co.. Ltd. Faculty of Science and Technology, Science University of Tokyo Inst

Microsoft PowerPoint - プレゼンテーション1

Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels).

Core Ethics Vol. Epstein, CI CI CI CI CI CI CI CI Epstein, CI CI CI CI CI CI CI CI CI CI Schindler, CI CI CI CI NIH CI Finn FDA / M CI N CI N / M, CI

昭和恐慌期における長野県下農業・農村と産業組合の展開過程

表1.eps

IR0036_62-3.indb

NINJAL Project Review Vol.3 No.3


% 1% SEM-EDX - X Si Ca SEM-EDX SIMS ppm % M M T 100 % 100 % Ba 1 % 91 % 9 % 9 % 1 % 87 % 13 % 13 % 1 % 64 % 36 % 36 % 1 % 34 46

A Higher Weissenberg Number Analysis of Die-swell Flow of Viscoelastic Fluids Using a Decoupled Finite Element Method Iwata, Shuichi * 1/Aragaki, Tsut


会報36号表紙

k = The Last Samurai Tom Cruise [1] Oracle Ken Watanabe (I) has a Bacon number of 2. 1: 6(k 6) (small world p

ス H95) は EF-G の GTP 結合部位と明確に相互作用しており このループが GTP 加水分解に直接関与していることが示唆されました ( 図 4 右 ) 本研究成果は わが国で推進している タンパク 3000 プロジェクト の一環として行われたものです 本研究成果の詳細は 米国の学術雑誌

Perl + α. : DNA, mrna,,

<95AA8E718CA4838C835E815B D862E696E6464>

年次大会原稿最終.PDF

untitled

A b a B AaBb Ab ab 1 1 AB ab A-b a-b 2.Meiosis recombination Meiosis mitosis crossover recombination bivalent DNA 2

Core Ethics Vol. -

*.E (..).R

本文3/YA8183E


untitled

06_学術_関節単純X線画像における_1c_梅木様.indd

研究成果報告書

( ) ( ) (action chain) (Langacker 1991) ( 1993: 46) (x y ) x y LCS (2) [x ACT-ON y] CAUSE [BECOME [y BE BROKEN]] (1999: 215) (1) (1) (3) a. * b. * (4)


1., 1 COOKPAD 2, Web.,,,,,,.,, [1]., 5.,, [2].,,.,.,, 5, [3].,,,.,, [4], 33,.,,.,,.. 2.,, 3.., 4., 5., ,. 1.,,., 2.,. 1,,

パナソニック技報

Present Situation and Problems on Aseismic Design of Pile Foundation By H. Hokugo, F. Ohsugi, A. Omika, S. Nomura, Y. Fukuda Concrete Journal, Vol. 29

システム開発プロセスへのデザイン技術適用の取組み~HCDからUXデザインへ~

01-加藤 実-5.02

資源と素材


Instability of Aerostatic Journal Bearings with Porous Floating Bush at High Speeds Masaaki MIYATAKE *4, Shigeka YOSHIMOTO, Tomoaki CHIBA and Akira CH

研究成果報告書(基金分)

能書単頁9[1].5(2)


1 Fig. 1 Extraction of motion,.,,, 4,,, 3., 1, 2. 2.,. CHLAC,. 2.1,. (256 ).,., CHLAC. CHLAC, HLAC. 2.3 (HLAC ) r,.,. HLAC. N. 2 HLAC Fig. 2


ディスプレイと携帯端末間の通信を実現する映像媒介通信技術

1

22.Q06.Q

GUNSLINGER GIRL

Vol. 48 No. 3 Mar PM PM PMBOK PM PM PM PM PM A Proposal and Its Demonstration of Developing System for Project Managers through University-Indus

EP-3 事件と中国の危機管理 : 2001年米中軍用機接触事故の今日的教訓


4章 困難な課題への挑戦 核酸結晶学

千葉県における温泉地の地域的展開

258 5) GPS 1 GPS 6) GPS DP 7) 8) 10) GPS GPS ) GPS Global Positioning System

1. Precise Determination of BaAl2O4 Cell and Certification of the Formation of Iron Bearing Solid Solution. By Hiroshi UCHIKAWA and Koichi TSUKIYAMA (

<332D985F95B62D8FAC93638BA795DB90E690B62E706466>

<95DB8C9288E397C389C88A E696E6462>

42 1 Fig. 2. Li 2 B 4 O 7 crystals with 3inches and 4inches in diameter. Fig. 4. Transmission curve of Li 2 B 4 O 7 crystal. Fig. 5. Refractive index

Introduction ur company has just started service to cut out sugar chains from protein and supply them to users by utilizing the handling technology of

Table 1. Assumed performance of a water electrol ysis plant. Fig. 1. Structure of a proposed power generation system utilizing waste heat from factori

研究成果報告書

_’¼Œì

社会技術論文集

2 146

研究成果報告書

RT-PCR プロトコール.PDF

Database Center for Life Science Online Service

16_.....E...._.I.v2006


PDCA

地質調査研究報告/Bulletin of the Geological Survey of Japan

,,.,.,,.,.,.,.,,.,..,,,, i

37-4.indd

Kyushu Communication Studies 第2号

PowerPoint プレゼンテーション



weak ferromagnetism observed on Shimotokuyama and Ayumikotan natural crystals behaves as pre dicted by Dzyaloshinsky and Moriya, while Wagasennin and

タンパク質の合成と 構造 機能 7 章 +24 頁 転写と翻訳リボソーム遺伝子の調節タンパク質の構造弱い結合とタンパク質の機能

<4D F736F F D20D2E5E7E8F1FB E3EEE45FE8F1EFF0>

untitled

2 194

1..FEM FEM 3. 4.

, (GPS: Global Positioning Systemg),.,, (LBS: Local Based Services).. GPS,.,. RFID LAN,.,.,.,,,.,..,.,.,,, i

yasi10.dvi

IHIMU Energy-Saving Principle of the IHIMU Semicircular Duct and Its Application to the Flow Field Around Full Scale Ships IHI GHG IHIMU CFD PIV IHI M

ÿþ

KII, Masanobu Vol.7 No Spring

Table 1. Reluctance equalization design. Fig. 2. Voltage vector of LSynRM. Fig. 4. Analytical model. Table 2. Specifications of analytical models. Fig

Core Ethics Vol.

00.\...ec5

1 Credit: NASA/JPL-Caltech/R. Hurt SSC-Caltech ,

SPring8菅野印刷.PDF

Fig. 2 Signal plane divided into cell of DWT Fig. 1 Schematic diagram for the monitoring system

磁気測定によるオーステンパ ダクタイル鋳鉄の残留オーステナイト定量

(2) (2) (3) (3) (5) ABI PRISM 7700 (5) Roche LightCycler TM (7) BioFlux LineGene (9) 1 RT-PCR (10) (12) (13) F. Hoffmann-La Roche Ltd. Roche Molecular

1 [1, 2, 3, 4, 5, 8, 9, 10, 12, 15] The Boston Public Schools system, BPS (Deferred Acceptance system, DA) (Top Trading Cycles system, TTC) cf. [13] [

Transcription:

21 Vol.11 No.1 Linda Rasubala Centre National de la Recherche Scientifique Dominique Fourmy Molecular Basis for the selenocysteine incorporation Toyoyuki Ose 1, Linda Rasubala 1, Satoko Yoshizawa 2, Dominique Fourmy 2, Daisuke Kohda 1, Katsumi Maenaka 1 1 Medical Institute of Bioregulation, Kyushu University 2 Centre National de la Recherche Scientifique Selenium, an essential trace element, is found in antioxidant proteins in the form of selenocysteine, the 21 st amino acid. In bacteria, the selenocysteine incorporation into proteins requires the elongation factor SelB that has the unusual property to bind directly to both transfer RNA (trna) and messenger RNA (mrna). The N-terminal domain of SelB is homologous to elongation factor Tu (EF-Tu) that transfers aminoacyl-trnas (aa-trnas) to the ribosomal A site in the form of a ternary complex EF-Tu-GTP-aa-tRNA. The accuracy of mrna decoding depends on base-pairings between the codon on the mrna and the anticodon on trna followed by EF-Tu GTP hydrolysis as well as conformational changes in the ribosome. In the case of the selenocysteine incorporation into polypeptides, a UGA codon is recoded as a Sec codon in the presence of the selenocysteine insertion sequence (SECIS) at its downstream. The unique extra C-terminal domain of SelB recognizes the SECIS mrna hairpin to deliver the selenocysteyl-trna (Sec-tRNA Sec ) at a UGA codon. However, the molecular basis of high specific recognition of SelB to the SECIS mrna hairpin has been unknown. We have reported the 2.3Å resolution crystal structure of the C-terminal mrna-binding domain of Moorella thermoacetica SelB complexed with SECIS RNA hairpin. This is the first structure of a complex between an RNA and a winged-helix domain. The winged-helix domain is famous for DNA-binding motif, recently implicated in RNA binding. The structure illustrates the specificity of binding and reveals a new mode of RNA recognition. A striking feature of the complex is a 70 angle between the RNA helical axis and the protein that allows the complex to wrap around the small ribosomal subunit. This geometry explains how SelB can bind to both mrna and trna whose sites are distant on the ribosome. 1. 20 21 mrna UGA -1-

構造生物 Vol.11 No.1 2005 年 6 月発行 般的に知られる翻訳終結反応では mrna 上に UGA などの終止コドンが現れると そ れに対応してリボソーム上の A-site にはアミノアシル trna ではなく release factor (RF)が取り込まれる RF は P-site の trna とペプチド鎖の間のエステル結合を加水分 解し 翻訳の終了したペプチド鎖が放出される しかし mrna 上の UGA コドンの 下流に SECIS と呼ばれる特殊な配列が存在した場合には 状況が一変する 下流に SECIS を持った mrna の UGA コドンが A-site に取り込まれると UGA は終止コド ンとして機能せずにセレノシステインを指定するコドンへと変身する A-site には RF が取り込まれないのでペプチド鎖はリボソームから解離せずに新たにセレノシステ インを付加して 伸長を続ける 図 1 SelB-SECIS 及びリボソームの相互作用 この現象を図 1 に示 した SECIS配列を有す るmRNAは SelBのC末 端 ド メ イ ン が SECIS RNA領域を認識するた め SelBを結合した状態 でリボソーム小サブユ ニットに引き込まれて い く mrna 上 の SelB がリボソームに到達し たとき SelBのN末端ド 図 2 Moorella thermoacetica 由来 SelB 分子のドメイン構造 メインに結合したセレ ノ シ ス テ イ ル trnasec がA-siteに入り アンチコドン部分がmRNAのUGAコドン部分と相互作用することに より UGAコドンがセレノシステインとして翻訳される つまりSelBはmRNAおよび trnaに結合することのできる多機能な伸長因子であると言える 図 2 は酢酸生産菌 Moorella thermoacetica由来 SelB分子のドメイン構造を表したものである バクテリア 真正細菌 のSelBは図 2 のようにN末端ドメインおよびC末端ドメインの二つのド メインに大別することができる N末端ドメイン(SelB-N)はEF-Tuと相同性のあるアミ ノ 酸 配 列 を 有 す る た め GTP 加 水 分 解 活 性 を 保 持 し セ レ ノ シ ス テ イ ン trnasec(sec-trnasec)を結合することができる 一方で SECISの特徴的な構造を認識 し 結合することできるのはSelBのC末端ドメイン(SelB-C)である -2-

NMR X RNA M. thermoacetica SECIS-RNA NMR 1 F(fdhF) mrna SECISmimic RNA 3 SECIS SelB-C SECIS-RNA 1, 2 M. thermoacetica SelB-C (370-634 ) Selmer 3 SelB-C DNA winged helix(wh) 3 fdhf(a) M. thermoacetica(b) SECIS ( 2) SelB N (SelB-N) EF-Tu trna Sec-tRNA Sec SelB SECIS trna A-site SECIS SECIS-RNA SelB-C SECIS 4 (512-634 :SelB-M) RNA SelB SelB-C K d =1µM SECIS-RNA 2. 2-1. Moorella thermoacetica SelB-M(512-634 ) DNA pgex-2t(amersham Biosciences) N GST glutathione agarose column(sigma) -3-

thrombin(sigma) glutathione agarose CM_Sepharose 48 RNA SECIS RNA M. thermoacetica FdhF SECIS-mRNA 23 (5 -GGCGUUGCCGGUCUGGCAACGCC-3 ) 3 GC SECIS RNA 10mM Tris-HCl ph7.0, 100mM NaCl, 0.1mM EDTA 8mg ml -1 0.1M Na-HEPES ph7.5, 1.4M trisodium citrate dihydrate 5 ethylene glycol 15% 2-2. P2 1 2 1 2(a=71.69 Å, b=81.69å, c=169.58å ) V M 3 4 -RNA M. thermoacetica SelB-M FdhF-SECIS AMoRe 6 Molrep 7 AMoRe SelB-M Molep SECIS SelB-SECIS -RNA 2.3Å CNS 8 R/R free factor = 0.224/0.279 4 2-3. 4 A B RNA RNA RNA DNA DNA- RNA AB C ( ) RNA C AB D RNA -4-

4 A, B, C D 2-4. SelB winged helix(wh) RNA SelB-C WH L SECIS-RNA C WH (WH4) ( 5) 5 SelB-M WH(SelB-C WH) helix-turn-helix WH DNA WH DNA RNA WH WH RNA WH -DNA WH 3 (H3: ) DNA major groove minor groove -5-

SelB WH H3 N RNA RNA H2 S2-S3 wing(w1)rna SelB-M SelB 452Å 2 buried-surface H3 groove buried-surface Sap1-DNA 818Å 2 buried-surface 9 452Å 2 buried-surface K d =1µM 2-5. SelB-M RNA SelB-C Cα rmsd 0.55Å SECIS SECIS NMR 4 G22-C25 ( 2) SECIS-RNA SelB SECIS-RNA 6a, b G23 U26 U26 6 SECIS-RNA (a, ) SECIS-SelB (b) -6-

6a G23 2 U24 O5 U24 2 C25 6b G23 U24 G23 U24 UGA SECIS M. thermoacetica SelB-SECIS SECIS WHH3 W1 SelB-WH4 H3 W1 G23 ( 5) G23 G23 Leu595 Leu610 Arg624 W1 Asp627 Arg624 G23 ( 7) G23 (O6) Arg629 G23 Glu614 G23 RNA 1, 2 Glu614 Arg629 7 SECIS SelB ( ) -7-

RNA Arg599, Ser605, Arg606 Lys607 ( 8) Arg606 RNA Arg606 U24 (O4) U24 1, 2 8 SECIS SelB ( ) 4. SelB-SECIS 1998 mrna 70S 10 9a, b 30S Head Body rrna h16 h33 SelB-C L 9c,d 30S SelB-C-CECIS SelB-M SECIS SelB-C SelB-C SECIS-RNA SelB-C WH3, WH4 RNA 70 SelB-C L SECIS-RNA SelB 30S SECIS 5 30S mrna 9a, b, c SECIS-RNA 30S mrna RNA AUG SECIS-RNA G23 23 upper stem 3b 12 -mrna A mrna 12-8-

EF-Tu 30S X EF-Tu-tRNA 11 EF-Tu-tRNA-30S 12 30S EF-Tu C SelB-C N 9a, b SelB-N EF-Tu SelB 30S SelB N Sec-tRNA Sec upper stem L SelB-C WH (WH4) UGA trna Sec 30S h16 h33 mrna-selb-sec-trna Sec -mrna ( 9a, b) SelB SECIS - GTP 30S head shoulder 13 SelB-mRNA SelB mrna SECIS mrna 30S SECIS SelB 9e SelB-SECIS (A, B, C) C RNA AB SECIS G23 C SelB-SICIS 5. SelB C (SelB-M) mrna SECIS-RNA SelB-M DNA winged helix SECIS PF SPring8-9-

1. Fourmy, D., Guittet, E. & Yoshizawa, S. Structure of prokaryotic SECIS mrna hairpin and its interaction with elongation factor SelB. Journal of Molecular Biology 324, 137-150 (2002). 2. Kromayer, M., Wilting, R., Tormay, P. & Böck, A. Domain structure of the prokaryotic selenocysteine-specific elongation factor SelB. Journal of Molecular Biology 262, 413-420 (1996). 3. Selmer, M. & Su, X. D. Crystal structure of an mrna-binding fragment of Moorella thermoacetica elongation factor SelB. The Embo Journal 21, 4145-4153 (2002). 4. Yoshizawa, S. et al. Structural basis for mrna recognition by elongation factor SelB. Nat Struct Mol Biol 12, 198-203 (2005). 5. Rasubala, L. et al. Crystallization and preliminary X-ray analysis of the mrna-binding domain of elongation factor selb in complex with RNA. Acta Crystallogr. F61, 296-298 (2005). 6. Navaza, J. AMoRe: an automated package for molecular replacement. Acta Crystallogr. A50, 157-163 (1994). 7. Vagin, A. A. & Isupov, M. N. Spherically averaged phased translation function and its application to the search for molecules and fragments in electron-density maps. Acta Crystallogr D Biol Crystallogr 57, 1451-6 (2001). 8. Brunger, A. T. et al. Crystallography & NMR system: A new software suite for macromolecualr structure determination. Acta Crystallographica D Biol Crystallogr. 54, 905-921 (1998). 9. Mo, Y., Vaessen, B., Johnston, K. & Marmorstein, R. Structures of SAP-1 bound to DNA targets from the E74 and c-fos promoters: insights into DNA sequence discrimination by Ets proteins. Mol Cell 2, 201-12 (1998). 10. Yusupova, G. Z., Yusupov, M. M., Cate, J. H. & Noller, H. F. The path of messenger RNA through the ribosome. Cell 106, 233-41 (2001). 11. Nissen, P. et al. Crystal structure of the ternary complex of Phe-tRNAPhe, EF-Tu, and a GTP analog. Science 270, 1464-72 (1995). 12. Stark, H. et al. Visualization of elongation factor Tu on the Escherichia coli ribosome. Nature 389, 403-6 (1997). 13. Ogle, J. M., Murphy, F. V., Tarry, M. J. & Ramakrishnan, V. Selection of trna by the ribosome requires a transition from an open to a closed form. Cell 111, 721-32 (2002). -10-